Homework 2 Solutions

1. (a)
$$A = \begin{bmatrix} 3 & 7 & 10 \\ 2 & 3 & -1 \\ 1 & 2 & 1 \end{bmatrix}$$
 Apply P_{13} , $A_{12}(-2)$, $A_{13}(-3)$, $M_2(-1)$, $A_{23}(-1)$, and $M_3(\frac{1}{4})$.
Then row-echelon form of A is $\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$, so $rank(A) = 3$.
(b) $A = \begin{bmatrix} 1 & -1 & -1 & 2 \\ 3 & -2 & 0 & 7 \\ 2 & -1 & 2 & 4 \\ 4 & -2 & 3 & 8 \end{bmatrix}$ Apply $A_{12}(-3)$, $A_{13}(-2)$, $A_{14}(-4)$, $A_{32}(-1)$, $A_{34}(-2)$, P_{23} ,
 $A_{34}(-1)$, $M_3(-1)$, $M_4(-1)$. Then row-echelon form of A is $\begin{bmatrix} 1 & -1 & -1 & 2 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$,
so $rank(A) = 4$.

2. Consider the augmented matrix of the system:

$$\begin{bmatrix} 1 & -1 & 0 & -1 & | & 2 \\ 2 & 1 & 3 & 7 & | & 2 \\ 3 & -2 & 1 & 0 & | & 4 \end{bmatrix}.$$

Apply $A_{12}(-2)$, $A_{13}(-3)$, $M_2(\frac{1}{3})$, $A_{23}(-1)$, then we get

1	$-1 \\ 1$	0	-1	2
0	1	1	3	$\begin{vmatrix} -\frac{2}{3} \\ -\frac{4}{3} \end{vmatrix}$.
0	0	0	0	$\left -\frac{4}{3} \right $

Since $rank(A) = 2 < 3 = rank(A^{\#})$, there is no solution for the system.

3. (a) Consider the augmented matrix of the system

$$\begin{bmatrix} 1 & 0 & 3 & | & 0 \\ 3 & -1 & 7 & | & 0 \\ 2 & 1 & 8 & | & 0 \\ 1 & 1 & 5 & | & 0 \\ -1 & 1 & -1 & | & 0 \end{bmatrix}.$$

Apply $A_{12}(-3)$, $A_{13}(-2)$, $A_{14}(-1)$, $A_{15}(1)$, $A_{23}(1)$, $A_{24}(1)$, $A_{25}(1)$, $M_2(-1)$, then we get

$$\begin{bmatrix} 1 & 0 & 3 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Since $rank(A) = rank(A^{\#}) = 2 < 3$, there are infinitely many solutions. Take *z* as a free variable *s*. Then, the solution is given by the set $\{(-3s, -2s, s)\}$.

(b) Consider the augmented matrix of the system

$$\begin{bmatrix} 2+i & i & 3-2i & | & 0\\ i & 1-i & 4+3i & | & 0\\ 3-i & 1+i & 1+5i & | & 0 \end{bmatrix}.$$

Apply $A_{12}(-\frac{i(2-i)}{5})$, $A_{13}(-\frac{(2-i)(3-i)}{5})$, $M_1(\frac{1}{2+i})$, $M_2(\frac{5}{7-6i})$, $M_3(\frac{1}{10i})$, then we get
$$\begin{bmatrix} 1 & \frac{i}{2+i} & \frac{3-2i}{2+i} & | & 0\\ 0 & 1 & \frac{13+11i}{7-6i} & | & 0\\ 0 & 0 & 1 & | & 0 \end{bmatrix}.$$

Since $rank(A) = rank(A^{\#}) = 3$, there is a unique solution, namely, the trivial solution (0, 0, 0).

4. Consider the augmented matrix of the system

$$\begin{bmatrix} k & 1 & 1 & | & 1 \\ 1 & k & 1 & | & 1 \\ 1 & 1 & k & | & 1 \end{bmatrix}.$$

Apply P_{12} , $A_{12}(-k)$, $A_{13}(-1)$, P_{23} , $A_{23}(-(1+k))$, then we get

$$\begin{bmatrix} 1 & k & 1 & | & 1 \\ 0 & 1-k & k-1 & | & 0 \\ 0 & 0 & (1-k)(2+k) & | & 1-k \end{bmatrix}.$$

(Case 1) If $\mathbf{k} = \mathbf{1}$, then we have $\begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$. Since $rank(A) = rank(A^{\#}) = 1 < 3$, there are infinitely many solutions.

(Case 2) If
$$\mathbf{k} = -2$$
, then we have $\begin{bmatrix} 1 & -2 & 1 & | & 1 \\ 0 & 3 & -3 & | & 0 \\ 0 & 0 & 0 & | & 3 \end{bmatrix}$. Since $rank(A) = 2 < 3 = rank(A^{\#})$, there is no solution for the system.

(Case 3) If $\mathbf{k} \neq \mathbf{1}, -\mathbf{2}$, we can also apply $M_2(\frac{1}{1-k})$ and $M_3(\frac{1}{(1-k)(2+k)})$, and get $\begin{bmatrix} 1 & k & 1 & | & 1 \\ 0 & 1 & -1 & | & 0 \\ 0 & 0 & 1 & | & \frac{1}{2+k} \end{bmatrix}$. Since $rank(A) = rank(A^{\#}) = 3$, there is a unique solution.

5. Consider the augmented matrix of the system

$$\begin{bmatrix} 1 & 2 & -1 & | & 3 \\ 2 & -3 & a & | & b \\ -1 & 4 & -2 & | & 5 \end{bmatrix}.$$

Apply $A_{12}(-2)$, $A_{13}(1)$, P_{23} , $M_2(\frac{1}{6})$, $A_{23}(7)$, then we get

$$\begin{bmatrix} 1 & 2 & -1 & | & 3 \\ 0 & 1 & -\frac{1}{2} & | & \frac{8}{6} \\ 0 & 0 & a - \frac{3}{2} & | & b + \frac{20}{6} \end{bmatrix}.$$

(Case 1) Suppose $\mathbf{a} \neq \frac{3}{2}$. Then we can apply $M_3(\frac{1}{a-\frac{3}{2}})$ and get $\begin{bmatrix} 1 & 2 & -1 & | & 3 \\ 0 & 1 & -\frac{1}{2} & | & \frac{8}{6} \\ 0 & 0 & 1 & | & (\frac{1}{a-\frac{3}{2}})(b+\frac{20}{6}) \end{bmatrix}$. Since $rank(A) = rank(A^{\#}) = 3$, whatever *b* is, **there is a unique solution**.

(Case 2) Suppose $\mathbf{a} = \frac{3}{2}$. If $\mathbf{b} = -\frac{20}{6}$, then we have $\begin{bmatrix} 1 & 2 & -1 & | & 3\\ 0 & 1 & -\frac{1}{2} & | & \frac{8}{6}\\ 0 & 0 & 0 & | & 0 \end{bmatrix}$. Since $rank(A) = rank(A^{\#}) = 2 < 3$, there are infinitely many solutions.

(Case 3) Suppose $\mathbf{a} = \frac{3}{2}$ but $\mathbf{b} \neq -\frac{20}{6}$, then we have $\begin{bmatrix} 1 & 2 & -1 & | & 3 \\ 0 & 1 & -\frac{1}{2} & | & \frac{8}{6} \\ 0 & 0 & 0 & | & b + \frac{20}{6} \neq 0 \end{bmatrix}$. Since $rank(A) = 2 < 3 = rank(A^{\#})$, there is no solution for the system.