In this document, you will find two types of problems: homework and study problems. You are required to submit **only the homework problems** to Gradescope. The study problems are intended to help you grasp the topics thoroughly and prepare for exams. It is strongly advised to attempt all study problems for a comprehensive understanding.

Please submit your homework to Gradescope until February 11, 11pm.

Homework problems

1. Find the determinants of the following matrices **using row operations and properties of determinants.**

	Го	7	1 7		2	1	3	5	
A =	0	1		Л	3	0	1	2	
A =	5	9	-0	B =	4	1	4	3	
	$\lfloor 2 \rfloor$	T	3	B =	5	2	5	3	

2. Determine all values of the constant *k* for which the given system has an infinite number of solutions. **Use determinant approach.**

$$\begin{array}{rcl}
x + 2y + kz &=& 0\\
2x - ky + z &=& 0\\
3x + 6y + z &=& 0
\end{array}$$

3. Let *A* and *B* be 4×4 matrices such that det(A) = 2 and det(B) = -6. Compute the determinant of the given matrices. Use the properties of determinant.

$$AB^{T}$$
, $A^{-1}(5B)$, $B^{2}A^{3}$, $(A^{T}B^{-1})^{2}$, $B^{-1}(2A)B^{T}$.

4. Compute the determinant of the following matrix using cofactor expansion. Pick the easiest row or column to use.

[2	0	-1	3	0
0	$0\\3$	0	1	2
0	1	3	0	4
1	0	1	-1	0
$\begin{bmatrix} 2\\0\\0\\1\\3 \end{bmatrix}$	0	2	0	$\begin{bmatrix} 0 \\ 2 \\ 4 \\ 0 \\ 5 \end{bmatrix}$

5. Use Cramer's rule to solve the given linear system.

$$\begin{array}{rcl} 3x + y + 2z &=& -1 \\ 2x - y + z &=& -1 \\ 5y + 5z &=& -5 \end{array}$$

Study problems

- 1. True-False Reviews on pages 205, 206, 218, 231, and 232.
- 2. Sections from 3.1 to 3.4 contains lots of exercises, solve them to study determinants, its properties, cofactor expansion, and Cramer's rule.
- 3. Escpecially, I suggest exercises 3.2.29-36 to study the relationship between row/column operations and determinants.
- 4. I suggest exercises 3.3.39-49 to study adjoints, cofactors, inverses.
- 5. I suggest exercises in Section 3.5 since it includes all questions from previous sections in Chapter 3.