Homework 4 Solutions

1. (a) First, we reduce $A =$ $\sqrt{ }$ $\overline{1}$ 3 7 1 5 9 −6 2 1 3 1 . Apply $A_{31}(-1)$, $A_{32}(-2)$, $A_{12}(-1)$, $A_{13}(-2)$, and $A_{23}(11)$, then we get $\sqrt{ }$ $\overline{1}$ $1 \t 6 \t -2$ $0 \quad 1 \quad -10$ $0 \quad 0 \quad -103$ 1 . This is upper triangular, and its determinant is $1 * 1 * (-103) = -103$. Since we only applied addition operation, by **P3** we have $det(A) = -103$. (b) First, we reduce $B =$ \lceil $\Big\}$ 2 1 3 5 3 0 1 2 4 1 4 3 5 2 5 3 1 $\begin{matrix} \end{matrix}$. Apply $A_{12}(-3/2)$, $A_{13}(-2)$, $A_{14}(-5/2)$, $A_{23}(-2/3)$, $A_{24}(-1/3)$, and $A_{34}(4)$ then we get $\sqrt{ }$ $\Big\}$ 2 1 3 5 $0 \quad -3/2 \quad -7/2 \quad -11/2$ 0 0 $1/3$ $-10/3$ 1 $\overline{}$. This

 $0 \t 0 \t -21$ is upper triangular, and its determinant is $2*(-3/2)*(1/3)$ we only applied addition operation, by **P3** we have $det(B) = 21$.

2. We know that the system has infinite number of solutions if and only if the determinant of the coefficient matrix is 0. Use the cofactor expansion at third column:

$$
\det\begin{pmatrix} 1 & 2 & k \\ 2 & -k & 1 \\ 3 & 6 & 1 \end{pmatrix} = kC_{13} + C_{23} + C_{33}
$$

= $k \det\begin{pmatrix} 2 & -k \\ 3 & 6 \end{pmatrix} - \det\begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix} + \det\begin{pmatrix} 1 & 2 \\ 2 & -k \end{pmatrix}$
= $3k^2 + 11k - 4 = (3k - 1)(k + 4)$

Therefore, the system has infinitely many solutions iff $k = 1/3$ or $k = -4$.

- 3. Let A and B be 4×4 matrices such that $\det(A) = 2$ and $\det(B) = -6$.
	- (a) $\det(AB^T) = \det(A)\det(B^T) = \det(A)\det(B) = -12.$
	- (b) $\det(A^{-1}(5B)) = \det(A^{-1})\det(5B) = \frac{1}{\det(A)} 5^4 \det(B) = \frac{1}{2} 5^4(-6) = -1875.$
	- (c) $\det(B^2A^3) = \det(B)^2 \det(A)^3 = (-6)^2 2^3 = 288.$
	- (d) det($(A^T B^{-1})^2$) = (det(A^T)det(B^{-1}))² = (det(A) $\frac{1}{det(A)}$ $\frac{1}{\det(B)})^2 = \left(-\frac{1}{3}\right)$ $(\frac{1}{3})^2 = \frac{1}{9}$ $\frac{1}{9}$.
	- (e) $\det(B^{-1}(2A)B^T) = \det(B^{-1})\det(2A)\det(B^T) = \frac{1}{\det(B)}2^4\det(A)\det(B) = 2^4(2) =$ 32.

4. We have several expansions:

$$
\det \begin{pmatrix} 2 & 0 & -1 & 3 & 0 \\ 0 & 3 & 0 & 1 & 2 \\ 1 & 0 & 1 & -1 & 0 \\ 3 & 0 & 2 & 0 & 5 \end{pmatrix} = 3C_{22} + C_{32}
$$

= 3det $\begin{pmatrix} 2 & -1 & 3 & 0 \\ 0 & 3 & 0 & 4 \\ 1 & 1 & -1 & 0 \\ 3 & 2 & 0 & 5 \end{pmatrix} - det \begin{pmatrix} 2 & -1 & 3 & 0 \\ 0 & 0 & 1 & 2 \\ 1 & 1 & -1 & 0 \\ 3 & 2 & 0 & 5 \end{pmatrix}$
= 3(3C₂₂ + 4C₂₄) - (C₂₃ + 2C₂₄)
= 3\left(3det $\begin{pmatrix} 2 & 3 & 0 \\ 1 & -1 & 0 \\ 3 & 0 & 5 \end{pmatrix} + 4det \begin{pmatrix} 2 & -1 & 3 \\ 1 & 1 & -1 \\ 3 & 2 & 0 \end{pmatrix} \right)$
= 3(3(-25) + 4(4)) - (-15) + 2(4)) = -170.

5. Cramer's rule gives that

$$
x = \frac{\det \begin{pmatrix} -1 & 1 & 2 \\ -1 & -1 & 1 \\ -5 & 5 & 5 \end{pmatrix}}{\det \begin{pmatrix} 3 & 1 & 2 \\ 2 & -1 & 1 \\ 0 & 5 & 5 \end{pmatrix}} = \frac{-10}{-20} = \frac{1}{2}.
$$

\n
$$
y = \frac{\det \begin{pmatrix} 3 & -1 & 2 \\ 2 & -1 & 1 \\ 0 & -5 & 5 \end{pmatrix}}{\det \begin{pmatrix} 3 & 1 & 2 \\ 2 & -1 & 1 \\ 0 & 5 & 5 \end{pmatrix}} = \frac{-10}{-20} = \frac{1}{2}.
$$

\n
$$
z = \frac{\det \begin{pmatrix} 3 & 1 & -1 \\ 2 & -1 & -1 \\ 0 & 5 & -5 \end{pmatrix}}{\det \begin{pmatrix} 3 & 1 & 2 \\ 2 & -1 & 1 \\ 0 & 5 & 5 \end{pmatrix}} = \frac{30}{-20} = -\frac{3}{2}.
$$

Thus $(\frac{1}{2})$ $\frac{1}{2},\frac{1}{2}$ $\frac{1}{2}, -\frac{3}{2}$ $\frac{3}{2}$) is the solution for the system.