Homework 5 Solutions

1. (a) On \mathbb{R}^2 , define the operations of addition and scalar multiplication as follows:

$$(x_1, x_2) \oplus (y_1, y_2) := (x_1 - x_2, y_1 - y_2) k \odot (x_1, x_2) := (-kx_1, -kx_2)$$

Which of the conditions for a vector space are satisfied with these operations? Is this a vector space structure?

We need to check ten properties one-by-one

- i. Closure under Vector Addition: $(x_1, x_2) \oplus (y_1, y_2) = (x_1 x_2, y_1 y_2) \in \mathbb{R}^2$. So this condition holds.
- ii. Closure under Scalar Multiplication: $k \odot (x_1, x_2) = (-kx_1, -kx_2) \in \mathbb{R}^2$. So this condition holds.
- iii. Commutativity of Vector Addition: We have $(1,0) \oplus (0,1) = (1,-1)$ but $(0,1) \oplus (1,0) = (-1,1)$. So this condition does not hold.
- iv. Associativity of Vector Addition: We have $((1,0) \oplus (0,1)) \oplus (0,0) = (2,0)$ but $(1,0) \oplus ((0,1) \oplus (0,0)) = (1,-1)$, so this property does not hold.
- v. Existence of Additive Identity: If there is $(a,b) \in \mathbb{R}^2$ such that for all $(x,y) \in \mathbb{R}^2$ we have

$$(x,y) \oplus (a,b) = (x,y),$$

then we would have (x - y, a - b) = (x, y) which is not always true. So there is no additive identity, namely, the zero vector.

- vi. **Existence of Additive Inverses:** Since there is no zero vector, there cannot be additive inverses.
- vii. **Identity Element of Scalar Multiplication:** We have $1 \odot (x, y) = (-x, -y)$ which is not always equal to (x, y). So the condition does not hold.
- viii. Distributivity of Scalar Multiplication with respect to Vector Addition: We have $k \odot ((x_1, x_2) \oplus (y_1, y_2)) = (-k(x_1 - x_2), -k(y_1 - y_2))$ and $(k \odot (x_1, x_2)) \oplus (k \odot (y_1, y_2)) = ((-kx_1) - (-kx_2), (-ky_1) - (-ky_2))$. Since they are equal, the condition holds.
 - ix. Distributivity of Scalar Multiplication with respect to Scalar Addition: We have $(k + l) \odot (x, y) = (-(k + l)x, -(k + l)y)$ but $(k \odot (x, y)) \oplus (l \odot (x, y)) = ((-kx) - (-ky), (-lx) - (-ly))$. Since they are not equal, the condition does not hold.
 - x. Compatibility of Scalar Multiplication with Scalar Multiplication: We have $k \odot (l \odot (x, y)) = ((-k)(-l)x, (-k)(-l)y) = (klx, kly)$, but $(kl) \odot (x, y) = (-klx, -kly)$. Since they are not always equal, the condition does not hold.

In summary, only the conditions 1,2, and 8 are satisfied. \mathbb{R}^2 is not a vector space with these operations.

(b) On $M_2(\mathbb{R})$, define the operation of addition by

$$A \oplus B := AB,$$

and use the usual scalar multiplication. Determine which conditions for a vector space are satisfied by $M_2(\mathbb{R})$ with these operations.

We need to check ten properties one-by-one as in the previous part.

- (a) Since $A \oplus B = AB \in M_2(\mathbb{R})$, the condition holds.
- (b) Since $kA \in M_2(\mathbb{R}^2)$, the condition holds.
- (c) We have $A \oplus B = AB$ but $B \oplus A = BA$ Since $AB \neq BA$ in general, the property does not hold.
- (d) Since matrix multiplication is associative, $(A \oplus B) \oplus C = A \oplus (B \oplus C)$. So the condition holds.
- (e) We can take I_2 , the identity matrix of size 2×2 , as the zero vector because $A \oplus I_2 = AI_2 = A$ for any $A \in M_2(\mathbb{R}^2)$. So the condition holds.
- (f) For $A \in M_2(\mathbb{R}^2)$, if we additive inverse \tilde{A} such that $A \oplus \tilde{A} = A\tilde{A} = I_2$, namely, A would be invertible. Since there are noninvertible matrices, the inverse condition does not hold in general.
- (g) Since 1A = A, the condition trivially holds.
- (h) Since $k(A \oplus B) = kAB$ but $kA \oplus kB = k^2AB$, the condition does not hold.
- (i) Since (k + l)A = kA + lA but $kA \oplus lA = klA$, and they are not the same in general, the property does not hold.
- (j) Since k(lA) = (kl)A, we have this property.

In summary, only the conditions 1,2,4,5,7 and 10 are satisfied. $M_2(\mathbb{R})$ is not a vector space with these operations.

- 2. Determine whether given sets S are a subspace of the given vector spaces V
 - (a) $S = \{(x, y) | x^2 y^2 = 0\}$ and $V = \mathbb{R}^2$. (1,1) $\in S$ and $(1,-1) \in S$, but $(1,1)+(1,-1) = (2,0) \notin S$. So S is not a subspace of \mathbb{R}^2 .
 - (b) $S = \{A \in M_n(\mathbb{R}) | tr(A) = 0\}$ and $V = M_n(\mathbb{R})$. Since tr(A + B) = tr(A) + tr(B) and tr(kA) = k(tr(A)), the subset *S* is closed under addition and scalar multiplication. So *S* is a subspace of $M_n(\mathbb{R})$.
- Prove that the space of polynomials of degree *n* or less, namely *P_n*, is a subspace of the space of real valued functions *Fun*(ℝ, ℝ). Hint: The proof is just one sentence :)
 Since *P_n* is a subset of *Fun*(ℝ, ℝ), and *P_n* is already a vector space with the usual

function addition and scalar multiplication, we have P_n is a subspace of $Fun(\mathbb{R}, \mathbb{R})$.

- 4. Determine whether the given vector **v** is an element of $span\{v_1, v_2\}$.
 - v = (3,3,4), v₁ = (1,-1,2), v₂ = (2,1,3).
 We want to determine whether there are scalars a, b such that av₁ + bv₂ = v. This yields a system of equations as

$$\begin{bmatrix} 1 & 2 \\ -1 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 4 \end{bmatrix}.$$

The reduced row-echelon form of augmented matrix $\begin{bmatrix} 1 & 2 & | & 3 \\ -1 & 1 & | & 3 \\ 2 & 3 & | & 4 \end{bmatrix}$ is $\begin{bmatrix} 1 & 0 & | & -1 \\ 0 & 1 & | & 2 \\ 0 & 0 & | & 0 \end{bmatrix}$. So we can take a = -1, b = 2. And YES!, we have $\mathbf{v} \in span\{v_1, v_2\}$.

v = (5,3,-6), v₁ = (-1,1,2), v₂ = (3,1,-4).
We want to determine whether there are scalars a, b such that av₁ + bv₂ = v. This yields a system of equations as

$$\begin{bmatrix} -1 & 3\\ 1 & 1\\ 2 & -4 \end{bmatrix} \begin{bmatrix} a\\ b \end{bmatrix} = \begin{bmatrix} 5\\ 3\\ -6 \end{bmatrix}.$$

The reduced row-echelon form of augmented matrix $\begin{bmatrix} -1 & 3 & | & 5 \\ 1 & 1 & | & 3 \\ 2 & -4 & | & -6 \end{bmatrix}$ is $\begin{bmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 2 \\ 0 & 0 & | & 0 \end{bmatrix}$. So we can take a = 1, b = 2. And YES!, we have $\mathbf{v} \in span\{v_1, v_2\}$.

• $\mathbf{v} = (1, 1, -2), v_1 = (3, 1, 2), v_2 = (-2, -1, 1).$

We want to determine whether there are scalars a, b such that $av_1 + bv_2 = \mathbf{v}$. This yields a system of equations as

$$\begin{bmatrix} 3 & -2 \\ 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}.$$

The reduced row-echelon form of augmented matrix $\begin{bmatrix} 3 & -2 & | & 1 \\ 1 & -1 & | & 1 \\ 2 & 1 & | & -2 \end{bmatrix}$ is $\begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 1 & | & 0 \\ 0 & 0 & | & 1 \end{bmatrix}$. Since the system has no solution, NO!, we have $\mathbf{v} \notin span\{v_1, v_2\}$.

5. Determine a spanning set for the null space of $A = \begin{bmatrix} 1 & 2 & 3 & 5 \\ 1 & 3 & 4 & 2 \\ 2 & 4 & 6 & -1 \end{bmatrix}$.

The reduced row echelon form of the matrix *A* is given by:

$$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Let $x_3 = t$ (where *t* is a free parameter), then:

$$x_1 = -t$$
$$x_2 = -t$$
$$x_3 = t$$
$$x_4 = 0$$

Thus, the vector that spans the null space of A can be written in terms of t as:

$$nullspace(A) = \{t(-1, -1, 1, 0) \mid t \in \mathbb{R}\}$$

Therefore, a spanning set for the null space of *A* is given by:

$$\{(-1, -1, 1, 0)\}$$