
Homework 5 Solutions

1. (a) On R2, define the operations of addition and scalar multiplication as follows:

(x1, x2)⊕ (y1, y2) := (x1 − x2, y1 − y2)

k ⊙ (x1, x2) := (−kx1,−kx2)

Which of the conditions for a vector space are satisfied with these operations?
Is this a vector space structure?
We need to check ten properties one-by-one

i. Closure under Vector Addition: (x1, x2)⊕ (y1, y2) = (x1−x2, y1− y2) ∈ R2.
So this condition holds.

ii. Closure under Scalar Multiplication: k⊙ (x1, x2) = (−kx1,−kx2) ∈ R2. So
this condition holds.

iii. Commutativity of Vector Addition: We have (1, 0) ⊕ (0, 1) = (1,−1) but
(0, 1)⊕ (1, 0) = (−1, 1). So this condition does not hold.

iv. Associativity of Vector Addition: We have ((1, 0) ⊕ (0, 1))⊕ (0, 0) = (2, 0)
but (1, 0)⊕ ((0, 1)⊕ (0, 0)) = (1,−1), so this property does not hold.

v. Existence of Additive Identity: If there is (a, b) ∈ R2 such that for all
(x, y) ∈ R2 we have

(x, y)⊕ (a, b) = (x, y),

then we would have (x − y, a − b) = (x, y) which is not always true. So
there is no additive identity, namely, the zero vector.

vi. Existence of Additive Inverses: Since there is no zero vector, there cannot
be additive inverses.

vii. Identity Element of Scalar Multiplication: We have 1⊙ (x, y) = (−x,−y)
which is not always equal to (x, y). So the condition does not hold.

viii. Distributivity of Scalar Multiplication with respect to Vector Addition:
We have k ⊙ ((x1, x2)⊕ (y1, y2)) = (−k(x1 − x2),−k(y1 − y2)) and
(k ⊙ (x1, x2)) ⊕ (k ⊙ (y1, y2)) = ((−kx1) − (−kx2), (−ky1) − (−ky2)). Since
they are equal, the condition holds.

ix. Distributivity of Scalar Multiplication with respect to Scalar Addition:
We have (k + l)⊙ (x, y) = (−(k + l)x,−(k + l)y) but
(k ⊙ (x, y)) ⊕ (l ⊙ (x, y)) = ((−kx) − (−ky), (−lx) − (−ly)). Since they are
not equal, the condition does not hold.

x. Compatibility of Scalar Multiplication with Scalar Multiplication: We
have k ⊙ (l ⊙ (x, y)) = ((−k)(−l)x, (−k)(−l)y) = (klx, kly), but
(kl)⊙ (x, y) = (−klx,−kly). Since they are not always equal, the condition
does not hold.

In summary, only the conditions 1,2, and 8 are satisfied. R2 is not a vector space
with these operations.
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(b) On M2(R), define the operation of addition by

A⊕B := AB,

and use the usual scalar multiplication. Determine which conditions for a vec-
tor space are satisfied by M2(R) with these operations.

We need to check ten properties one-by-one as in the previous part.

(a) Since A⊕B = AB ∈ M2(R), the condition holds.

(b) Since kA ∈ M2(R2), the condition holds.

(c) We have A⊕B = AB but B⊕A = BA Since AB ̸= BA in general, the property
does not hold.

(d) Since matrix multiplication is associative, (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C). So the
condition holds.

(e) We can take I2, the identity matrix of size 2 × 2, as the zero vector because
A⊕ I2 = AI2 = A for any A ∈ M2(R2). So the condition holds.

(f) For A ∈ M2(R2), if we additive inverse Ã such that A ⊕ Ã = AÃ = I2, namely,
A would be invertible. Since there are noninvertible matrices, the inverse con-
dition does not hold in general.

(g) Since 1A = A, the condition trivially holds.

(h) Since k(A⊕B) = kAB but kA⊕ kB = k2AB, the condition does not hold.

(i) Since (k + l)A = kA + lA but kA ⊕ lA = klA, and they are not the same in
general, the property does not hold.

(j) Since k(lA) = (kl)A, we have this property.

In summary, only the conditions 1,2,4,5,7 and 10 are satisfied. M2(R) is not a vector
space with these operations.

2. Determine whether given sets S are a subspace of the given vector spaces V

(a) S = {(x, y)
∣∣∣x2 − y2 = 0} and V = R2.

(1, 1) ∈ S and (1,−1) ∈ S, but (1, 1)+(1,−1) = (2, 0) /∈ S. So S is not a subspace
of R2.

(b) S = {A ∈ Mn(R)
∣∣∣tr(A) = 0} and V = Mn(R).

Since tr(A + B) = tr(A) + tr(B) and tr(kA) = k(tr(A)), the subset S is closed
under addition and scalar multiplication. So S is a subspace of Mn(R).

3. Prove that the space of polynomials of degree n or less, namely Pn, is a subspace of
the space of real valued functions Fun(R,R). Hint: The proof is just one sentence :)

Since Pn is a subset of Fun(R,R), and Pn is already a vector space with the usual
function addition and scalar multiplication, we have Pn is a subspace of Fun(R,R).
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4. Determine whether the given vector v is an element of span{v1, v2}.

• v = (3, 3, 4), v1 = (1,−1, 2), v2 = (2, 1, 3).
We want to determine whether there are scalars a, b such that av1 + bv2 = v.
This yields a system of equations as 1 2

−1 1
2 3

[
a
b

]
=

33
4

 .

The reduced row-echelon form of augmented matrix

 1 2 | 3
−1 1 | 3
2 3 | 4

 is

1 0 | −1
0 1 | 2
0 0 | 0

.

So we can take a = −1, b = 2. And YES!, we have v ∈ span{v1, v2}.

• v = (5, 3,−6), v1 = (−1, 1, 2), v2 = (3, 1,−4).
We want to determine whether there are scalars a, b such that av1 + bv2 = v.
This yields a system of equations as−1 3

1 1
2 −4

[
a
b

]
=

 5
3
−6

 .

The reduced row-echelon form of augmented matrix

−1 3 | 5
1 1 | 3
2 −4 | −6

 is

1 0 | 1
0 1 | 2
0 0 | 0

.

So we can take a = 1, b = 2. And YES!, we have v ∈ span{v1, v2}.

• v = (1, 1,−2), v1 = (3, 1, 2), v2 = (−2,−1, 1).
We want to determine whether there are scalars a, b such that av1 + bv2 = v.
This yields a system of equations as3 −2

1 −1
2 1

[
a
b

]
=

 1
1
−2

 .

The reduced row-echelon form of augmented matrix

3 −2 | 1
1 −1 | 1
2 1 | −2

 is

1 0 | 0
0 1 | 0
0 0 | 1

.

Since the system has no solution, NO!, we have v /∈ span{v1, v2}.

5. Determine a spanning set for the null space of A =

1 2 3 5
1 3 4 2
2 4 6 −1

.

The reduced row echelon form of the matrix A is given by:1 0 1 0
0 1 1 0
0 0 0 1


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Let x3 = t (where t is a free parameter), then:

x1 = −t

x2 = −t

x3 = t

x4 = 0

Thus, the vector that spans the null space of A can be written in terms of t as:

nullspace(A) = {t(−1,−1, 1, 0) | t ∈ R}

Therefore, a spanning set for the null space of A is given by:

{(−1,−1, 1, 0)} .
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