Homework 5 Solutions

1. (a) On R?, define the operations of addition and scalar multiplication as follows:

(x1,22) B (y1,y2) = (T1 — T2, 91 — Yo)
k © (1'1, 113'2) = (—k’l'1, —kfl'Q)

Which of the conditions for a vector space are satisfied with these operations?
Is this a vector space structure?

We need to check ten properties one-by-one

.

ii.

iii.

iv.

Vi.

Vii.

Viii.

ix.

Closure under Vector Addition: (z1,22) ® (y1,%2) = (x1 — 22,51 — y2) € R%
So this condition holds.
Closure under Scalar Multiplication: k ® (21, x9) = (—kxz1, —kzs) € R?. So
this condition holds.
Commutativity of Vector Addition: We have (1,0) @ (0,1) = (1,—1) but
(0,1) ® (1,0) = (—1,1). So this condition does not hold.
Associativity of Vector Addition: We have ((1,0) & (0,1)) & (0,0) = (2,0)
but (1,0) & ((0,1) & (0,0)) = (1, —1), so this property does not hold.
Existence of Additive Identity: If there is (a,b) € R? such that for all
(z,y) € R? we have

(z,9) ® (a,0) = (z,9),

then we would have (r — y,a — b) = (x,y) which is not always true. So
there is no additive identity, namely, the zero vector.

Existence of Additive Inverses: Since there is no zero vector, there cannot
be additive inverses.

Identity Element of Scalar Multiplication: We have 1 ® (z,y) = (—z, —y)
which is not always equal to (z,y). So the condition does not hold.
Distributivity of Scalar Multiplication with respect to Vector Addition:
We have k£ © ((z1,22) ® (y1,92)) = (—k(z1 — z2), —k(y1 — y2)) and

(kO (21,22)) ® (k © (y1,42)) = ((—k21) — (=kw2), (=ky1) — (—kyz)). Since
they are equal, the condition holds.

Distributivity of Scalar Multiplication with respect to Scalar Addition:
We have (k+1) © (x,y) = (—(k + )z, —(k + 1)y) but

(ko (z,v) @ (1 ® (x,y) = ((—kz) — (—ky), (=lz) — (=ly)). Since they are
not equal, the condition does not hold.

Compatibility of Scalar Multiplication with Scalar Multiplication: We
have k © (1 ® (x,y)) = ((—=k)(—)z, (=k)(—1)y) = (klx, kly), but

(kl) ® (z,y) = (—klz, —kly). Since they are not always equal, the condition
does not hold.

In summary, only the conditions 1,2, and 8 are satisfied. R? is not a vector space
with these operations.



(b) On M,(R), define the operation of addition by
A® B:= AB,
and use the usual scalar multiplication. Determine which conditions for a vec-

tor space are satisfied by M,(R) with these operations.

We need to check ten properties one-by-one as in the previous part.

(a) Since A @ B = AB € M,(R), the condition holds.
(b) Since kA € M,(IR?), the condition holds.

(c) Wehave A@ B = ABbut B A = BASince AB # BA in general, the property
does not hold.

(d) Since matrix multiplication is associative, (A @& B) & C = A @ (B & C). So the
condition holds.

(e) We can take I, the identity matrix of size 2 x 2, as the zero vector because
A® I, = AL, = A for any A € My(R?). So the condition holds.

(f) For A € M,(R?), if we additive inverse Asuchthat A@ A = AA = [, namely,
A would be invertible. Since there are noninvertible matrices, the inverse con-
dition does not hold in general.

(g) Since 1A = A, the condition trivially holds.
(h) Since k(A @ B) = kAB but kA & kB = k*AB, the condition does not hold.

(i) Since (k +1)A = kA + A but kA & [A = klA, and they are not the same in
general, the property does not hold.

(j) Since k(lA) = (kl)A, we have this property.

In summary, only the conditions 1,2,4,5,7 and 10 are satisfied. M>(R) is not a vector
space with these operations.

2. Determine whether given sets S are a subspace of the given vector spaces V'

(@) S={(z,y)|z* —y*=0}and V = R2%

(1,1) € Sand (1,—1) € S,but (1,1)+(1,—1) = (2,0) ¢ S. So S is not a subspace
of R2.

(b) S ={A € M,(R)|tr(A) = 0} and V = M, (R).

Since tr(A + B) = tr(A) + tr(B) and tr(kA) = k(tr(A)), the subset S is closed
under addition and scalar multiplication. So S is a subspace of M, (R).

3. Prove that the space of polynomials of degree n or less, namely F,, is a subspace of
the space of real valued functions Fun(R,R). Hint: The proof is just one sentence :)

Since P, is a subset of Fun(R,R), and P, is already a vector space with the usual
function addition and scalar multiplication, we have P, is a subspace of Fun(R,R).



4. Determine whether the given vector v is an element of span{vi, v2}.

° v = (3,3,4), v = (1,-1,2), vo = (2, 1,3).
We want to determine whether there are scalars a, b such that av, + bvy, = v.
This yields a system of equations as

1 2| 3 10 |
The reduced row-echelon form of augmented matrix |-1 1 | 3|is [0 1 |

2 3| 4| |o 0 |
So we can take a = —1,b = 2. And YES!, we have v € span{vy, v3}.

o v=(53,—6),v; = (—1,1,2), v, = (3,1, —4).
We want to determine whether there are scalars a, b such that av, + bvy, = v.
This yields a system of equations as

—13@ )
11{]:3

5 1
The reduced row-echelon form of augmented matrix | 1 1 | 3 |is [0
0

So we can take @ = 1,b = 2. And YES!, we have v € span{vy, vs}.

e v=(1,1,-2),v; =(3,1,2), v = (=2,—1,1).
We want to determine whether there are scalars a, b such that av, + bvy = v.
This yields a system of equations as

3_2a 1
1 -1 {blz 1

2 1 -2
3 -2 | 1 10
The reduced row-echelon form of augmented matrix 1 —1 | 1 |is |0 1
2 1 | =2| |00
Since the system has no solution, NO!, we have v ¢ span{v, v2}.
123 5
5. Determine a spanning set for the null spaceof A = |1 3 4 2
2 46 -1

The reduced row echelon form of the matrix A is given by:

_ o O

1
0
0

o = O

1
1
0

0
0].
1



Let 3 = t (where t is a free parameter), then:

T, = —t
Ty = —1
T3 =1
4 =0

Thus, the vector that spans the null space of A can be written in terms of ¢ as:
nullspace(A) = {t(—1,—1,1,0) | t € R}
Therefore, a spanning set for the null space of A is given by:

{(-1,-1,1,0)}.



