In this document, you will find two types of problems: homework and study problems. You are required to submit **only the homework problems** to Gradescope. The study problems are intended to help you grasp the topics thoroughly and prepare for exams. It is strongly advised to attempt all study problems for a comprehensive understanding.

Please submit your homework to Gradescope until March 3, 11pm.

Homework problems

- 1. Determine whether the given set of vectors is linearly dependent or independent in R^n for given n. In the case of linear dependence, find a dependency relationship.
 - (a) $\{(2,-1), (3,2), (0,1)\}$, n = 2.
 - (b) $\{(1,2,3), (1,-1,2), (1,-4,1)\}$, n = 3.
 - (c) $\{(1, -1, 2, 3), (2, -1, 2, -1), (-1, 1, 1, 1)\}$, n = 4.
- 2. Determine all values of the constant k for which the given vectors (1, 1, k), (0, 2, k), and (1, k, 6) are linearly dependent in \mathbb{R}^3 .
- 3. Determine whether the following statements are true or false. Give explanation for your answers.
 - (a) If a set contains the zero vector, it is linearly dependent.
 - (b) If $z \in span\{x, y\}$, then $\{x, y, z\}$ is linearly dependent.
 - (c) If a 2 × 2 matrix has linearly independent columns, then its columns span \mathbb{R}^2 .
 - (d) If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^3$ and \mathbf{x} is not a multiple of \mathbf{y} , then $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent.
- 4. Determine whether given set of vectors is linearly independent.

(a)
$$A_1 = \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -1 & 1 \\ 2 & 1 \end{bmatrix}$, $A_3 = \begin{bmatrix} 2 & 1 \\ 5 & 7 \end{bmatrix}$ in $M_2(\mathbb{R})$.
(b) $p_1(x) = 1 - 3x^2$, $p_2(x) = 2x + x^2$, $p_3(x) = 5$ in $P_2(\mathbb{R})$.

5. Use the Wronskian to show that given functions are linearly independent on the given interval *I*.

(a)
$$f_1(x) = 1$$
, $f_2(x) = x$, $f_3(x) = x^2$, $I = (-\infty, \infty)$.
(b) $f_1(x) = \sin x$, $f_2(x) = \cos x$, $f_3(x) = \tan x$, $I = (-\frac{\pi}{2}, \frac{\pi}{2})$.

Study problems

- 1. True-False Reviews on page 296.
- 2. All exercises in Section 4.5. Especially, I recommend exercises from 1 to 35.
- 3. Exercises 4.5.46, 48, 49, 50, 53 are good exercises for proof related problems.