Homework 6 Solutions

- 1. Determine whether the given set of vectors is linearly dependent or independent in $Rⁿ$ for given n . In the case of linear dependence, find a dependency relationship.
	- (a) $\{(2,-1),(3,2),(0,1)\}\;$, $n=2$. Since there are three \mathbb{R}^2 vectors, they must be linear dependent. We have

$$
3(2, -1) - 2(3, 2) - (0, 1) = (0, 0),
$$

You can find these scalars via Gauss-Jordan elimination, but in this case, it might be easy to guess.

(b) $\{(1, 2, 3), (1, -1, 2), (1, -4, 1)\}\,$, $n = 3$. Let $A =$ $\sqrt{ }$ \mathbf{I} 1 1 1 $2 -1 -4$ 3 2 1 1 . Since $\det(A) = 0$, the vectors are linearly dependent. To get the dependency equation, we should solve $A\mathbf{x} = \mathbf{0}$. Reduce the augmented matrix $\sqrt{ }$ \mathbf{I} 1 1 1 | 0 2 −1 −4 | 0 3 2 1 | 0 1 . Apply $A_{12}(-2)$, $A_{13}(-3)$, $A_{32}(-3)$, P_{23} , $M_2(-1)$, $A_{21}(-1)$ and get $\sqrt{ }$ $\overline{}$ $1 \t0 \t-1 \t0$ $0 \quad 1 \quad 2 \quad | \quad 0$ $0 \quad 0 \quad 0$ 0 1 . Although there are infinitely many solutions, for the

question, we care at least one nontrivial solution. Take $z = 1$, $y = -2$, $x = 1$, so we have

$$
(1,2,3) - 2(1,-1,2) + (1,-4,1) = (0,0,0).
$$

If you find the scalars via guess & check, it is also fine. Otherwise, you can always use Gauss-Jordan elimination.

(c) $\{(1, -1, 2, 3), (2, -1, 2, -1), (-1, 1, 1, 1)\}\,$, $n = 4$.

Since there are three \mathbb{R}^4 vectors, there is no shortcut, namely, we should solve Γ 1 $\overline{2}$

the system directly. Let
$$
A = \begin{bmatrix} 1 & 2 & -1 \\ -1 & -1 & 1 \\ 2 & 2 & 1 \\ 3 & -1 & 1 \end{bmatrix}
$$
. We need to solve $Ax = 0$.
\nReduced row echelon form of $\begin{bmatrix} 1 & 2 & -1 & | & 0 \\ -1 & -1 & 1 & | & 0 \\ 2 & 2 & 1 & | & 0 \\ 3 & -1 & 1 & | & 0 \end{bmatrix}$ is $\begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$. Thus,

there is only trivial solution which means these vectors are linearly independent.

2. Determine all values of the constant k for which the given vectors $(1, 1, k)$, $(0, 2, k)$, and $(1, k, 6)$ are linearly dependent in \mathbb{R}^3 .

These vectors are linearly dependent if and only if

$$
\det \left(\begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & k \\ k & k & 6 \end{bmatrix} \right) = -k^2 - k + 12 = (-k+3)(k+4) = 0.
$$

Thus, we have $k = 3, -4$.

- 3. Determine whether the following statements are true or false. Give explanation for your answers.
	- (a) If a set contains the zero vector, it is linearly dependent. True because of the next statement. The zero vector is always in spanS for any set of vectors S.
	- (b) If $z \in span\{x, y\}$, then $\{x, y, z\}$ is linearly dependent. True. If a, b are scalars such that $z = ax + by$, then $z - ax - by = 0$, so they are dependent.
	- (c) If a 2 \times 2 matrix has linearly independent columns, then its columns span \mathbb{R}^2 . True. If $A = [\mathbf{v}_1 \ \mathbf{v}_2]$ is 2×2 matrix such that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent, it means $det(A) \neq 0$. Therefore, for any $\mathbf{v} \in \mathbb{R}^2$ we have $A\mathbf{x} = \mathbf{v}$ is consistent, so any v can be written as a linear combination of v_1, v_2 . This means that $\mathbb{R}^2 =$ $span{\mathbf{v}_1, \mathbf{v}_2}.$
	- (d) If $x, y \in \mathbb{R}^3$ and x is not a multiple of y, then $\{x, y\}$ is linearly independent. False. Take $y = (0, 0, 0)$ and $x = (1, 2, 3)$. Then x is not a multiple of y, but $\{x, y\}$ is linearly dependent.
- 4. Determine whether given set of vectors is linearly independent.

(a)
$$
A_1 = \begin{bmatrix} 1 & 0 \ 1 & 2 \end{bmatrix}
$$
, $A_2 = \begin{bmatrix} -1 & 1 \ 2 & 1 \end{bmatrix}$, $A_3 = \begin{bmatrix} 2 & 1 \ 5 & 7 \end{bmatrix}$ in $M_2(\mathbb{R})$.
\nLet $x, y, z \in \mathbb{R}$ be such that $xA_1 + yA_2 + zA_3 = \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix}$. Then we get the following equation system\n
$$
\begin{bmatrix} 1 & -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ 1 & 0 \end{bmatrix}
$$

1

. Since the

 $0 \quad 0 \quad 0 \quad 0$ $0 \quad 0 \quad 0 \quad 0$ \parallel

system has infinitely many solutions, $\{A_1, A_2, A_3\}$ is linearly dependent.

(b) $p_1(x) = 1 - 3x^2$, $p_2(x) = 2x + x^2$, $p_3(x) = 5$ in $P_2(\mathbb{R})$. Let $a, b, c \in \mathbb{R}$ be such that

$$
a(1 - 3x^2) + b(2x + x^2) + c(5) = 0
$$

which means

$$
(-3a+b)x^{2} + (2b)x + (a-5c) = 0.
$$

Then, we can immediately derive that $b = 0$, and then $a = 0$, and so $c = 0$. Therefore, $\{p_1, p_2, p_3\}$ is linearly independent.

- 5. Use the Wronskian to show that given functions are linearly independent on the given interval I.
	- (a) $f_1(x) = 1$, $f_2(x) = x$, $f_3(x) = x^2$, $I = (-\infty, \infty)$. $W[f_1, f_2, f_3](x) = det$ $\sqrt{ }$ \mathbf{I} \lceil \mathbf{I} $1 \quad x \quad x^2$ $0 \quad 1 \quad 2x$ $0 \quad 0 \quad 2$ 1 \mathbf{I} \setminus $= 2 \neq 0$ whatever x is. By Wronskian theorem, $\{f_1, f_2, f_3\}$ is linearly independent.
	- (b) $f_1(x) = \sin x$, $f_2(x) = \cos x$, $f_3(x) = \tan x$, $I = \left(-\frac{\pi}{2}\right)$ $\frac{\pi}{2}$, $\frac{\pi}{2}$ $\frac{\pi}{2}$.

$$
W[f_1, f_2, f_3](x) = \det \left(\begin{bmatrix} \sin x & \cos x & \tan x \\ \cos x & -\sin x & \sec^2 x \\ -\cos x & -\cos x & 2\sec^2 x \tan x \end{bmatrix} \right) = -\frac{2\sin x}{\cos^3 x} - \tan x.
$$

Since $W[f_1, f_2, f_3](\frac{\pi}{4}) = -5 \neq 0$, by Wronskian theorem, $\{f_1, f_2, f_3\}$ is linearly independent.