In this document, you will find two types of problems: homework and study problems. You are required to submit **only the homework problems** to Gradescope. The study problems are intended to help you grasp the topics thoroughly and prepare for exams. It is strongly advised to attempt all study problems for a comprehensive understanding.

Please submit your homework to Gradescope until March 29, 11pm.

Homework problems

- 1. Determine whether the given function T is a linear transformation or not.
 - $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x + 2y, 2x y).
 - $T: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ defined by T(A) = AB BA, where B is fixed $n \times n$ matrix.
 - $T: P_2(\mathbb{R}) \to \mathbb{R}$ defined by $T(ax^2 + bx + c) = a + b + c + 5$.
 - $T : \mathbb{R}^4 \to \mathbb{R}^3$ defined by $T(a, b, c, d) = (a^2, 2b, c^3 + 3d)$.
- 2. Let $T_1 : V \to W$ and $T_2 : V \to W$ be linear transformations, and let *c* be scalar. We define **sum** $T_1 + T_2$ and the **scalar product** cT_1 by

$$(T_1 + T_2)(\mathbf{v}) = T_1(\mathbf{v}) + T_2(\mathbf{v})$$

and

$$(cT_1)(\mathbf{v}) = c(T_1(\mathbf{v}))$$

for all $\mathbf{v} \in V$. Verify that $T_1 + T_2$ and cT_1 are linear transformations.

- 3. Consider the linear transformation $S : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ defined by $S(A) = A + A^T$ where A is a fixed $n \times n$ matrix. Find Ker(S), Ran(S), and their dimensions.
- 4. Let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis for the vector space *V*. and suppose that $T_1 : V \to V$ and $T_2 : V \to V$ are the linear transformations satisfying

$$T_1(\mathbf{v}_1) = \mathbf{v}_1 - \mathbf{v}_2, T_1(\mathbf{v}_2) = 2\mathbf{v}_1 + \mathbf{v}_2, T_2(\mathbf{v}_1) = \mathbf{v}_1 + 2\mathbf{v}_2, T_2(\mathbf{v}_2) = 3\mathbf{v}_1 - \mathbf{v}_2.$$

Determine $(T_2T_1)(\mathbf{v})$ for an arbitrary vector $\mathbf{v} \in V$.

- 5. (a) Determine an isomorphism between \mathbb{R}^2 and $P_1(\mathbb{R})$.
 - (b) Let *V* denote the vector space of all 4×4 upper triangular matrices. Find *n* such that *V* is isomorphic to \mathbb{R}^n , and construct an isomorphism.
 - (c) Determine an isomorphism between \mathbb{R}^3 and the subspace of $M_2(\mathbb{R})$ consisting of all symmetric matrices.

Study problems

- 1. True-False Review in Pages 388, 389, 405, 416, 417 from the textbook
- 2. Exercises 6.1.1-23, 6.1.27-36 are good for studying on linear transformations.
- 3. Exercises 6.3.1-24 are good for studying on the kernel and the range.
- 4. Exercises 6.3.1-47 are good for studying on the one-to-one, onto, and invertible linear transformations.
- 5. Additional problems in Pages 429 and 430 (except for 20-23) are good for general study on chapter 6.