
Homework 9 Solutions

1. Given that v is an eigenvector of A with eigenvalue λ, and v is also an eigenvector
of B with eigenvalue µ, we want to show:

(a) v is an eigenvector of the matrix AB. Since

Av = λv

and
Bv = µv,

then
ABv = A(Bv) = A(µv) = µ(Av) = µ(λv) = λµv.

Therefore, v is an eigenvector of AB with the corresponding eigenvalue λµ
(equivalently the eigenvalue µλ).

(b) To prove v is an eigenvector of A + B and find the corresponding eigenvalue,
we calculate:

(A+B)v = Av +Bv = λv + µv = (λ+ µ)v.

Hence, v is an eigenvector of A+B, and the corresponding eigenvalue is λ+µ.

2. (a) The matrix A =

[
2 3
2 1

]
has two distinct eigenvalues, λ1 = −1 and λ2 = 4, each

with multiplicity 1. Since there are two distinct eigenvalues, the matrix A is
non-defective in the real field, indicating that it is diagonalizable over R.

(b) The matrix A =

[
6 5
−5 −4

]
has a single eigenvalue, λ = 1, with multiplicity 2.

The eigenspace corresponding to this eigenvalue is generated by the eigenvec-
tor: [

−1
1

]
Since there is only one linearly independent eigenvector for an eigenvalue of
multiplicity 2, the matrix does not have a complete set of linearly independent
eigenvectors, indicating that A is defective and not diagonalizable.

(c) The matrix A =

[
1 −2
5 3

]
has two distinct complex eigenvalues, λ1 = 2 − 3i

and λ2 = 2 + 3i, each with multiplicity 1. Since there are two distinct eigen-
values, the matrix A is non-defective in the complex field, indicating that it is
diagonalizable over C.
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3. (a) Expanding the determinant det(A− λI3) and comparing with the general form
of the characteristic polynomial, using the cofactor expansion via the first col-
umn, we see that:

det(A− λI3) = (a11 − λ)((a22 − λ)(a33 − λ)− a23a32) +

−a21(a12(a33 − λ)− a11a33) +

a31(a12a23 − a13(a22 − λ))

= . . .+ (a11 + a22 + a33)λ
2 + . . .+

(a11)(a22a33 − a23a32)− a21(a12a33 − a11a32) + a31(a12a23 − a13a22)

= . . .+ (a11 + a22 + a33)λ
2 + . . .+ det(A).

Therefore, b1 = (a11 + a22 + a33), and b3 = det(A). Here, b1 is the coefficient of
λ2 and b3 is the constant term of the polynomial, which equals the determinant
of A.

(b) By expanding the polynomial in terms of eigenvalues, we find:

p(λ) = λ1λ2λ3 − (λ1 + λ2)λ3λ+ λ3λ
2 − (λ1λ2)λ+ (λ1 + λ2)λ

2 − λ3,

and so

b1 = (λ1 + λ2 + λ3),

b3 = λ1λ2λ3.

This shows that b1 is the sum of the eigenvalues, and b3 is the product of the
eigenvalues.

(c) From parts (a) and (b), we can conclude:

det(A) = b3 = λ1λ2λ3,

tr(A) = b1 = a11 + a22 + a33 = λ1 + λ2 + λ3.

Therefore, the determinant of A is the product of its eigenvalues, and the trace
of A is the sum of its eigenvalues.

4. (a) Let P = I , where I is the identity matrix. Since I is invertible and I−1 = I , we
have:

I−1AI = A.

Thus, A is similar to itself by definition, proving reflexivity.

(b) Given that A is similar to B, there exists an invertible matrix P such that:

P−1AP = B.

To show B is similar to A, consider P−1 as the invertible matrix. Multiplying
both sides of the equation by P = (P−1)−1 from the left and P−1 from the right,
we get:

(P−1)−1BP−1 = PBP−1 = A.

Hence, B is similar to A with the invertible matrix P−1, proving symmetry.
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(c) Given that A is similar to B, there exists an invertible matrix P such that:

P−1AP = B.

And if B is similar to C, there exists an invertible matrix Q such that:

Q−1BQ = C.

Substituting the expression for B gives:

(PQ)−1A(PQ) = Q−1P−1APQ = Q−1BQ = C.

Since the product of invertible matrices is invertible, and (PQ)−1 = Q−1P−1,
we have shown that A is similar to C using the invertible matrix PQ, proving
transitivity.

5. (a) Given the matrix A:

A =

 1 −3 3
−2 −4 6
−2 −6 8

 ,

we found its eigenvalues to be λ1 = 1 with multiplicity 1, and λ2 = 2 with mul-
tiplicity 2. Details are left to the student, but the corresponding eigenvectors
are:

• For λ1 = 1, an eigenvector is

1
2

1
1

.

• For λ2 = 2, two linearly independent eigenvectors are

−3
1
0

 and

30
1

.

Using these eigenvectors, we construct the matrix S as:

S =

1
2

−3 3
1 1 0
1 0 1

 .

Then, we calculate S−1AS and verify it yields a diagonal matrix:

S−1AS =

1 0 0
0 2 0
0 0 2

 ,

where the diagonal elements are the eigenvalues of A, confirming that S diag-
onalizes A.

(b) Given the matrix A:

A =


3 −2 3 −2
−2 3 −2 3
3 −2 3 −2
−2 3 −2 3

 ,

we found its eigenvalues to be λ1 = 10, λ2 = 2, and λ3 = 0 (with multiplicity
2). Details are left to the student, but the corresponding eigenvectors are:
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• For λ1 = 10, an eigenvector is


−1
1
−1
1

.

• For λ2 = 2, an eigenvector is


1
1
1
1

.

• For λ3 = 0, two linearly independent eigenvectors are


−1
0
1
0

 and


0
−1
0
1

.

Using these eigenvectors, we construct the matrix S as:

S =


−1 1 −1 0
1 1 0 −1
−1 1 1 0
1 1 0 1

 .

Then, we calculate S−1AS and verify it yields a diagonal matrix:

S−1AS =


10 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

 ,

where the diagonal elements are the eigenvalues of A, confirming that S diag-
onalizes A.
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