QUIZ 10 - MATH 225 SOLUTIONS

1. Determine whether given matrix A is diagonalizable or not. Where possible, find the invertible matrix S and the diagonal matrix D that satisfy $S^{-1}AS = D$.

$$(a)A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 1 \end{pmatrix} \quad (b)A = \begin{pmatrix} 1 & 3 \\ 2 & 2 \end{pmatrix}.$$

(a)
$$\det(A - \lambda I) = \det \begin{pmatrix} 2 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 0 \\ 2 & -1 & 1 - \lambda \end{pmatrix} = (2 - \lambda)(1 - \lambda)^2,$$

So we have two eigenvalues: $\lambda_1 = 2$ with algebraic multiplicity 1, $\lambda_2 = 1$ with algebraic multiplicity 2.

For
$$\lambda_2 = 1$$
 We need to solve $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$,

The system gives x = 0, y = 0, z =free so v = (0, 0, z) for $z \in \mathbb{R}$. Since the eigenspace has dimension 1, we get geometric multiplicity \neq algebraic multiplicity.

So *A* is not diagonalizable.

(b)
$$\det(A - \lambda I) = \det \begin{pmatrix} 1 - \lambda & 3 \\ 2 & 2 - \lambda \end{pmatrix} = (1 - \lambda)(2 - \lambda) - 6 = \lambda^2 - 3\lambda - 4 = (\lambda - 4)(\lambda + 1).$$

Since *A* has two distinct eigenvalues, *A* is non-defective and so diagonalizable. For $\lambda = 4$, an eigenvector is (1, 1). For $\lambda = -1$, an eigenvector is $(-\frac{3}{2}, 1)$. So we can take

$$S = \begin{pmatrix} 1 & -\frac{3}{2} \\ 1 & 1 \end{pmatrix}, \quad D = \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix}.$$
 It gives $S^{-1}AS = D.$