QUIZ 1 SOLUTIONS - MATH 225

Note that the other version of this quiz is similar, with different numbers on A, B, C.

Question. Let
$$A = \begin{bmatrix} -1 & 5 & 3 & 4 \\ -2 & 0 & 6 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} -4 & 0 \\ 1 & 3 \\ 1 & -4 \\ 0 & 2 \end{bmatrix}$, $C = \begin{bmatrix} -1 \\ -7 \\ 4 \\ 2 \end{bmatrix}$.

Compute the following expressions if possible:

1. $A^T - 5B$

The size of A^T is 4×2 , and the size of -5B is 4×2 . So the subtraction makes sense. We have

$\begin{bmatrix} -1 & -2 \end{bmatrix}$]	20	0		[19	-2]
5 0		-5	-15	=	0	-15
3 6	+	-5	20		-2	26
4 1		0	-10		4	-9

2. $C^T B$

The size of C^T is 1×4 , and the size of *B* is 4×2 . So the multiplication makes sense. We have

$$\begin{bmatrix} -1 & -7 & 4 & 2 \end{bmatrix} \begin{bmatrix} -4 & 0 \\ 1 & 3 \\ 1 & -4 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} (4 - 7 + 4 + 0) & (0 - 21 - 16 + 4) \end{bmatrix} = \begin{bmatrix} 1 & -33 \end{bmatrix}.$$

3. A^2

This means that we want to compute *AA*. However, we cannot multiply a 2×4 matrix with a 2×4 matrix. In other words, the multiplication does not make sense because

the number of columns of $A = 4 \neq 2$ = the number of rows of A.

4. AB and tr(AB)

Since the number of columns of A = 4 = the number of rows of B, the multiplication makes sense. We have

$$\begin{bmatrix} -1 & 5 & 3 & 4 \\ -2 & 0 & 6 & 1 \end{bmatrix} \begin{bmatrix} -4 & 0 \\ 1 & 3 \\ 1 & -4 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} (4+5+3+0) & (0+15-12+8) \\ (8+0+6+0) & (0+0-24+2) \end{bmatrix} = \begin{bmatrix} 12 & 11 \\ 14 & -22 \end{bmatrix}$$

Since *AB* is a square matrix, we can compute the trace tr(A) = 12 + (-22) = -10.

5. $C^T B + A$

By Part 2, we know $C^T B$ has dimension 1×2 . Since this is not equal to the dimension of A, the addition does not make sense.