Linear Algebra & Differential Equations

Elif Uskuplu

If you see any mistake, please email me (euskuplu@usc.edu).

1 Week 1

1.1 Synopsis of the course

This course is about the algebra and analysis of linear equations like

$$
2x + y = 5
$$

\n
$$
x + 3y = 10.
$$
\n(1)

During the lectures, we will build many tools to solve such equations and advanced ones. How such a course is related to differential equations? When such equations involve derivatives, for example,

$$
x'-6y = 0
$$

$$
y'-x-y = 0,
$$

where x, y are functions, our tools, we build during linear algebra part, will solve these differential equations.

We can regard the coefficients in the system [\(1\)](#page-0-0) as a rectangular array of numbers:

$$
\begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \tag{2}
$$

we call this array a *matrix*. We will learn basics and fundamentals of matrices.

We can also regard the system [\(1\)](#page-0-0) as a linear combinations of *vectors*:

$$
x\begin{bmatrix} 2 \\ 1 \end{bmatrix} + y\begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ 10 \end{bmatrix}.
$$
 (3)

We will understand *vector spaces* to build the tools for solving linear equations.

A simple approach to solve [\(1\)](#page-0-0) would be taking double of the second row and subtracting the first row from it to get $5y = 5$ so $y = 1$, and hence $x = 2$. This simple technique will be applied by *reducing operations* on the matrix [\(2\)](#page-0-1), and we will see more advanced versions of reducing operations during the course.

When a system of equations is too complex, we expect to simplify it. This means that we should be able to *turn a system to another* which is done by *linear transformations*, another major concept in the course.

Another way to solve linear equations involves playing with the matrix form like [\(2\)](#page-0-1). We'll learn how (and when) to make *inverse of a matrix* and how to *decompose* a matrix into simpler ones.

1.2 Matrices

Definition 1.1. An $m \times n$ *matrix* is a rectangular array of numbers in m rows and n columns.

$$
A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m \times n}
$$
 (4)

The number $m \times n$ *is called the size (or dimension) of A. When* $m = 1$, A *is called a row vector*, *and when* $n = 1$, A *is called a column vector.*

Taking a_{ij} as the entry at ith row and jth column, we can write $A = [a_{ij}]$ in short. In [\(4\)](#page-1-0), if \mathbf{r}_i is the *i*th row for $1 \leq i \leq m$, and \mathbf{c}_j is the *j*th column for $1 \leq j \leq n$, we can also write A as below. The first is *row representation*, and the second is *column representation*.

$$
A = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \vdots \\ \mathbf{r}_m \end{bmatrix} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix}
$$

Remark. If $A = [a_{ij}]$ is an $m \times n$ matrix and $B = [b_{ij}]$ is an $r \times s$ matrix, then $A = B$ if and only if $m = r$, $n = s$, and $a_{ij} = b_{ij}$ for each index. In other words, equal matrices have the same sizes and the same entries at each index.

Definition 1.2. *The transpose of a matrix is a flipped version of the original matrix. We can transpose a matrix by switching its rows with its columns. If* $A = [a_{ij}]$ *is an* $m \times n$ *matrix, its transpose, denoted by* A^T *, is an* $n\times m$ *matrix such that* $A^T=[c_{ij}]$ *where* $c_{ij}=a_{ji}.$

Example.

$$
A = \begin{bmatrix} 4 & 3 & 7 \\ 12 & 0 & 5 \end{bmatrix} \quad A^T = \begin{bmatrix} 4 & 12 \\ 3 & 0 \\ 7 & 5 \end{bmatrix}
$$

Example. The transpose of a row vector is a column vector, and vice versa.

Definition 1.3. If A is a matrix of size $n \times n$, namely, $\#$ of rows $=$ $\#$ of columns, then A is a **square** matrix. The following notions make sense only for such a square matrices. Let $A = [a_{ij}]$ *be a square matrix of size* $n \times n$ *:*

• The elements $\{a_{11}, a_{22}, \ldots, a_{nn}\}$ form the **diagonal** of A.

- *The trace* of A is the sum of entries on the diagonal, namely, $Tr(A) = a_{11} + a_{22} + ... + a_{nn}$.
- If $a_{ij} = 0$ for $i < j$, then A is called *lower triangular matrix*.
- If $a_{ij} = 0$ for $i > j$, then A is called upper triangular matrix.
- If $a_{ij} = 0$ for $i = j$, then A is called **diagonal matrix**.
- If $A^T = A$, then A is called *symmetric matrix.*
- If $A^T = -A$, then A is called **anti(skew)-symmetric matrix**. Here we mean $-A = [-a_{ij}]$.

Example. The following are lower triangular, upper triangular, diagonal, symmetric, and anti-symmetric, respectively:

Remark. The diagonal entries of an anti-symmetric matrix cannot be nonzero.

Definition 1.4. *The zero matrix of size* $m \times n$ *is a matrix all of whose entries are zero. It is also called* **null matrix**. We denote it by $\mathbf{0}_{m \times n}$.

1.3 Matrix addition and scalar multiplication

Definition 1.5. Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be two $m \times n$ matrices, and s be a scalar(number). *We define the addition of* A *and* B*, and the scalar multiple of* A *as follows:*

$$
A + B := [a_{ij} + b_{ij}]
$$
\n
$$
sA := [s(a_{ij})]
$$

Then we also have subtraction defined as $A - B := A + (-1)B = [a_{ij} - b_{ij}]$ *.*

If two matrices have different sizes, we **cannot** add them. These operations have the following properties:

- $A + B = B + A$.
- $A + (B + C) = (A + B) + C$,
- $A + 0 = A$, $1A = A$,
- $s(A + B) = sA + sB$,
- $(s + t)A = sA + tA$,
- $s(tA) = (st)A = (ts)A = t(sA).$

Proof. Exercise. Just use $A = [a_{ij}]$ notation for each case.

 \Box

1.4 Matrix multiplication

Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be two $m \times n$ matrices. You may think that the product matrix AB is obtained by like the addition, namely, the componentwise multiplication $AB = [a_{ij}b_{ij}]$. Although this is a valid operation, this is not the multiplication operation we deal with. The reason will become clear after we cover *linear transformations*. Let's define the right way of multiplication. We define it in three steps:

Definition 1.6. *(Step 1)* Let $A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$ be a row vector and $B =$ $\sqrt{ }$ b_1 b_2 *. . .* b_n 1 *be a column*

vector. Then the dot product of A, B is a scalar (number), denoted by $A \cdot B$ *, denoted by* $A \cdot B$, denoted by $B \cdot B$.

$$
A \cdot B := a_1b_1 + a_2b_2 + \ldots + a_nb_n.
$$

Example.
$$
\begin{bmatrix} 2 & 4 & 5 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix} = 6 + 4 + 0 = 10.
$$

Definition 1.7. *(Step 2) Let* A = $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ *r*1 *r*2 *. . . r*m 1 *be an* m × n *matrix, namely, r*ⁱ *'s are* n*-row vectors. Let*

 $B =$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ b_1 b_2 *. . .* b_n 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ *be a column vector. Then the product of* A *and* B *is an* m*-column vector (*m×1 *matrix) defined by*

$$
AB := \begin{bmatrix} r_1 \cdot B \\ r_2 \cdot B \\ \vdots \\ r_m \cdot B \end{bmatrix}.
$$

Example.
$$
\begin{bmatrix} 2 & 4 & 7 \\ 5 & 12 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} 2 & 4 & 7 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 6 \\ 2 \\ 1 \end{bmatrix} \\ \begin{bmatrix} 5 & 12 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 6 \\ 6 \\ 2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 6+24+14 \\ 15+72+2 \end{bmatrix} = \begin{bmatrix} 44 \\ 89 \end{bmatrix}.
$$

Remark. In Definition 3.2, if we write $A = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_n \end{bmatrix}$ where \mathbf{c}_i 's are m-column

vectors, and
$$
B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}
$$
, we have
\n
$$
AB = b1\mathbf{c}_1 + b_2\mathbf{c}_2 + \dots + b_n\mathbf{c}_m.
$$
\n**Example.** $\begin{bmatrix} 2 & 4 & 7 \\ 5 & 12 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ 5 \end{bmatrix} + 6 \begin{bmatrix} 4 \\ 12 \end{bmatrix} + 2 \begin{bmatrix} 7 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 15 \end{bmatrix} + \begin{bmatrix} 24 \\ 72 \end{bmatrix} + \begin{bmatrix} 14 \\ 2 \end{bmatrix} = \begin{bmatrix} 44 \\ 89 \end{bmatrix}.$ \n**Definition 1.8.** *(Step 3) Let* $A = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix}$ *be an* $m \times n$ *matrix and* $B = \begin{bmatrix} c_1 & c_2 & \dots & c_p \end{bmatrix}$ *be an*

 $n \times p$ *matrix. Then the product of A and B is an* $m \times p$ *matrix defined by AB* := [c_{ij}] *such that* $c_{ij} := \pmb{r}_i \cdot \pmb{c}_j$ for $1 \leq i \leq m$ and $1 \leq j \leq p.$ So in the full expansion, we have

$$
\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{np} \end{bmatrix}
$$

=
$$
\begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1n}b_{n1} & \dots & a_{11}b_{1p} + a_{12}b_{2p} + \dots + a_{1n}b_{np} \\ a_{21}b_{11} + a_{22}b_{21} + \dots + a_{2n}b_{n1} & \dots & a_{21}b_{1p} + a_{22}b_{2p} + \dots + a_{2n}b_{np} \\ \vdots & \ddots & \vdots \\ a_{m1}b_{11} + a_{m2}b_{21} + \dots + a_{mn}b_{n1} & \dots & a_{m1}b_{1p} + a_{m2}b_{2p} + \dots + a_{mn}b_{np} \end{bmatrix}
$$

In other words, the entries of AB is given by $c_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$ for $1 \leq i \leq m$ and $1 \leq j \leq p$.

Remark. In matrix multiplication, BE AWARE of the dimensions. In order to multiply A and B , we must have

of columns of $A = #$ of rows of B.

Example. $\begin{bmatrix} 2 & 4 & 7 \\ 5 & 12 & 1 \end{bmatrix}$ \vert 3 3 7 1 5 9 1 $\Big\} =$ $\begin{bmatrix} 6+28+35 & 6+4+63 \\ 15+84+5 & 15+12+9 \end{bmatrix}$ = $\begin{bmatrix} 69 & 73 \\ 104 & 36 \end{bmatrix}.$

Definition 1.9. *The identity matrix, denoted by* I_n *, is an* $n \times n$ *matrix such that all diagonal entries are 1, the other entries are 0.*

The following are properties of multiplication operation:

•
$$
A(BC) = (AB)C,
$$

.

- $A(B+C) = AB + AC$
- $(A + B)C = AC + BC$,
- $AB \neq BA$ in general !!!
- $A_{m \times n} I_n = A$,
- $I_m A_{m \times n} = A$.

Also, the following are the properties of transpose with operations:

- $(A^T)^T = A$,
- $(A + B)^{T} = A^{T} + B^{T}$,

•
$$
(AB)^{T} = B^{T}A^{T}.
$$

Proof. We'll prove some of them, the others are exercises.

 $(A^T)^T = A$

Let $A=[a_{ij}]$ be an $m\times n$ matrix, then A^T has size $n\times m$, so $(A^T)^T$ has dimension $m \times n.$ Thus, $(A^T)^T$ and A have the same dimensions. Also, $A^T = [(a_{ij})^T]$, and hence $(A^T)^T = [((a_{ij})^T)^T]$. Observe that $((a_{ij})^T)^T = (a_{ji})^T = a_{ji}$. Thus, $(A^T)^T$ and A have the same entries.

• $(AB)^T = B^T A^T$

Let $A = [a_{ij}]$ be an $m \times n$ matrix, and $B = [b_{ij}]$ be an $n \times p$ matrix. Then AB is an $m \times p$ matrix, so $(AB)^T$ is a $p \times m$ matrix. On the other hand, B^T is a $p \times n$ matrix and A^T is an $n\times m$ matrix, so B^TA^T is a $p\times m$ matrix. Thus, $(AB)^T$ and B^TA^T have the same dimensions.

Let $1 \leq i \leq p$ and $1 \leq j \leq m$. We want to show that the *ij*th entries of $(AB)^T$ and B^TA^T are equal. Now, we have the following:

1.
$$
((AB)^T)_{ij} = (AB)_{ji} = \sum_{k=1}^n a_{jk}b_{ki}
$$

2. $(B^T A^T)_{ij} = \sum_{k=1}^n (B^T)_{ik} (A^T)_{kj} = \sum_{k=1}^n (B)_{ki} (A)_{jk} = \sum_{k=1}^n b_{ki} a_{jk}$

Clearly, last expressions on both are the same. So we have $(AB)^T = B^T A^T$.

 \Box

Proposition 1.1. *The product of two lower (upper) triangular matrices is a lower (upper) triangular matrix.*

Proof. Exercise. This is Theorem 2.2.24, as presented in the textbook. While the proof is available for reading, it is advisable to attempt solving it on your own first. \Box

1.5 Linear equations

Definition 1.10. An $m \times n$ **system of linear equations** is the list of m equations with n vari*ables:*

$$
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2
$$

\n
$$
\cdots \cdots = \vdots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m.
$$

We call a_{ij} 's *coefficients,* x_i 's *variables (unknowns),* **and** b_i **'s ***constants*. If $b_i = 0$ for all i, *then the system is called homogeneous. Otherwise, the system is nonhomogeneous.*

We say an n-tuple (c_1, c_2, \ldots, c_n) is a **solution** for the system if this tuple satisfies each equa*tions. If a system has at least one solution, it is called consistent. Otherwise, it is inconsistent.*

Example. The following system is consistent because $(x = 1, y = 3)$ gives a solution.

$$
2x + y = 5
$$

$$
-3x + 6y = 15
$$

Remark. We can write such a system using matrices. The **matrix of coefficients** of the system is given by

$$
A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}
$$

.

The **augmented matrix** of the system is given by

$$
A^{\#} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & | & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & | & b_2 \\ \vdots & \vdots & \ddots & \vdots & | & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & | & b_m \end{bmatrix}.
$$

Then we write such a system as follows, $Ax = b$ where:

$$
\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.
$$

This is called **vector formulation** of a system of linear equations.

During the lectures, we'll answer such questions:

- Does a system have a solution?
- If yes, then how many solutions are there?
- How we determine all the solutions?

For those who are interested in the geometry behind small cases, the following videos provide, maybe too cartoonish :), but good references:

* Visualizing Linear Equations in Three Variables

<https://www.youtube.com/watch?v=Wm27Y6hxbRs>

* Types of Linear Systems in Three Variables

```
https://www.youtube.com/watch?v=WAzUwzV1F3g
```
1.6 Questions from the discussion sessions

The questions 2.[1](#page-7-0).10, 11, 18, 20, 22-27 from the textbook¹ Some parts of the question 2.2.3 from the textbook QUIZ : Posted on Blackboard and the course webpage.

¹Differential Equations and Linear Algebra by Stephen Goode & Scott Annin