
Linear Algebra & Differential Equations
Elif Uskuplu
If you see any mistake, please email me (euskuplu@usc.edu).

1 Week 1

1.1 Synopsis of the course

This course is about the algebra and analysis of linear equations like

2x+ y = 5

x+ 3y = 10. (1)

During the lectures, we will build many tools to solve such equations and advanced ones.
How such a course is related to differential equations? When such equations involve
derivatives, for example,

x′ − 6y = 0

y′ − x− y = 0,

where x, y are functions, our tools, we build during linear algebra part, will solve these
differential equations.

We can regard the coefficients in the system (1) as a rectangular array of numbers:[
2 1
1 3

]
(2)

we call this array a matrix. We will learn basics and fundamentals of matrices.

We can also regard the system (1) as a linear combinations of vectors:

x

[
2
1

]
+ y

[
1
3

]
=

[
5
10

]
. (3)

We will understand vector spaces to build the tools for solving linear equations.

A simple approach to solve (1) would be taking double of the second row and subtract-
ing the first row from it to get 5y = 5 so y = 1, and hence x = 2. This simple technique
will be applied by reducing operations on the matrix (2), and we will see more advanced
versions of reducing operations during the course.

When a system of equations is too complex, we expect to simplify it. This means
that we should be able to turn a system to another which is done by linear transformations,
another major concept in the course.
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Another way to solve linear equations involves playing with the matrix form like (2).
We’ll learn how (and when) to make inverse of a matrix and how to decompose a matrix into
simpler ones.

1.2 Matrices

Definition 1.1. An m× n matrix is a rectangular array of numbers in m rows and n columns.

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn


m×n

(4)

The number m×n is called the size (or dimension) of A. When m = 1, A is called a row vector,
and when n = 1, A is called a column vector.

Taking aij as the entry at ith row and jth column, we can write A = [aij] in short. In
(4), if ri is the ith row for 1 ≤ i ≤ m, and cj is the jth column for 1 ≤ j ≤ n, we can also
write A as below. The first is row representation, and the second is column representation.

A =


r1
r2
...

rm

 =
[
c1 c2 . . . cn

]

Remark. If A = [aij] is an m× n matrix and B = [bij] is an r × s matrix, then A = B if
and only if m = r, n = s, and aij = bij for each index. In other words, equal matrices have
the same sizes and the same entries at each index.

Definition 1.2. The transpose of a matrix is a flipped version of the original matrix. We can
transpose a matrix by switching its rows with its columns. If A = [aij] is an m × n matrix, its
transpose, denoted by AT , is an n×m matrix such that AT = [cij] where cij = aji.

Example.

A =

[
4 3 7
12 0 5

]
AT =

4 12
3 0
7 5


Example. The transpose of a row vector is a column vector, and vice versa.

Definition 1.3. If A is a matrix of size n × n, namely, # of rows = # of columns, then A is a
square matrix. The following notions make sense only for such a square matrices. Let A = [aij]
be a square matrix of size n× n:

• The elements {a11, a22, . . . , ann} form the diagonal of A.
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• The trace of A is the sum of entries on the diagonal, namely, Tr(A) = a11+a22+ . . .+ann.

• If aij = 0 for i < j, then A is called lower triangular matrix.

• If aij = 0 for i > j, then A is called upper triangular matrix.

• If aij = 0 for i = j, then A is called diagonal matrix.

• If AT = A, then A is called symmetric matrix.

• If AT = −A, then A is called anti(skew)-symmetric matrix. Here we mean −A = [−aij].

Example. The following are lower triangular, upper triangular, diagonal, symmetric,
and anti-symmetric, respectively:1 0 0

2 5 0
7 10 11

 ,

8 2 3
0 5 4
0 0 9

 ,

42 0 0
0 17 0
0 0 100

 ,

1 4 5
4 2 6
5 6 3

 ,

 0 1 2
−1 0 3
−2 −3 0


Remark. The diagonal entries of an anti-symmetric matrix cannot be nonzero.

Definition 1.4. The zero matrix of size m× n is a matrix all of whose entries are zero. It is also
called null matrix. We denote it by 0m×n.

1.3 Matrix addition and scalar multiplication

Definition 1.5. Let A = [aij] and B = [bij] be two m × n matrices, and s be a scalar(number).
We define the addition of A and B, and the scalar multiple of A as follows:

A+B := [aij + bij] sA := [s(aij)]

Then we also have subtraction defined as A−B := A+ (−1)B = [aij − bij].

If two matrices have different sizes, we cannot add them. These operations have the
following properties:

• A+B = B + A,

• A+ (B + C) = (A+B) + C,

• A+ 0 = A, 1A = A,

• s(A+B) = sA+ sB,

• (s+ t)A = sA+ tA,

• s(tA) = (st)A = (ts)A = t(sA).

Proof. Exercise. Just use A = [aij] notation for each case.
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1.4 Matrix multiplication

Let A = [aij] and B = [bij] be two m × n matrices. You may think that the product
matrix AB is obtained by like the addition, namely, the componentwise multiplication
AB = [aijbij]. Although this is a valid operation, this is not the multiplication operation
we deal with. The reason will become clear after we cover linear transformations. Let’s
define the right way of multiplication. We define it in three steps:

Definition 1.6. (Step 1) Let A =
[
a1 a2 . . . an

]
be a row vector and B =


b1
b2
...
bn

 be a column

vector. Then the dot product of A,B is a scalar (number), denoted by A ·B, defined by

A ·B := a1b1 + a2b2 + . . .+ anbn.

Example.
[
2 4 5

]
·

31
0

 = 6 + 4 + 0 = 10.

Definition 1.7. (Step 2) Let A =


r1
r2
...

rm

 be an m× n matrix, namely, ri’s are n-row vectors. Let

B =


b1
b2
...
bn

 be a column vector. Then the product of A and B is an m-column vector (m×1 matrix)

defined by

AB :=


r1 ·B
r2 ·B

...
rm ·B

 .

Example.
[
2 4 7
5 12 1

]36
2

 =


[
2 4 7

]
·

36
2


[
5 12 1

]
·

36
2



 =

[
6 + 24 + 14
15 + 72 + 2

]
=

[
44
89

]
.

Remark. In Definition 3.2, if we write A =
[
c1 c2 . . . cn

]
where ci’s are m-column
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vectors, and B =


b1
b2
...
bn

, we have

AB = b1c1 + b2c2 + . . .+ bncm.

Example.
[
2 4 7
5 12 1

]36
2

 = 3

[
2
5

]
+ 6

[
4
12

]
+ 2

[
7
1

]
=

[
6
15

]
+

[
24
72

]
+

[
14
2

]
=

[
44
89

]
.

Definition 1.8. (Step 3) Let A =


r1
r2
...

rm

 be an m × n matrix and B =
[
c1 c2 . . . cp

]
be an

n × p matrix. Then the product of A and B is an m × p matrix defined by AB := [cij] such that
cij := ri · cj for 1 ≤ i ≤ m and 1 ≤ j ≤ p. So in the full expansion, we have

a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn



b11 b12 . . . b1p
b21 b22 . . . b2p
...

... . . . ...
bn1 bn2 . . . bnp



=


a11b11 + a12b21 + . . .+ a1nbn1 . . . a11b1p + a12b2p + . . .+ a1nbnp
a21b11 + a22b21 + . . .+ a2nbn1 . . . a21b1p + a22b2p + . . .+ a2nbnp

... . . . ...
am1b11 + am2b21 + . . .+ amnbn1 . . . am1b1p + am2b2p + . . .+ amnbnp


.

In other words, the entries of AB is given by cij =
∑n

k=1 aikbkj for 1 ≤ i ≤ m and 1 ≤ j ≤ p.

Remark. In matrix multiplication, BE AWARE of the dimensions. In order to multiply
A and B, we must have

# of columns of A = # of rows of B.

Example.
[
2 4 7
5 12 1

]3 3
7 1
5 9

 =

[
6 + 28 + 35 6 + 4 + 63
15 + 84 + 5 15 + 12 + 9

]
=

[
69 73
104 36

]
.

Definition 1.9. The identity matrix, denoted by In, is an n × n matrix such that all diagonal
entries are 1, the other entries are 0.

The following are properties of multiplication operation:

• A(BC) = (AB)C,
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• A(B + C) = AB + AC,

• (A+B)C = AC +BC,

• AB ̸= BA in general !!!

• Am×nIn = A,

• ImAm×n = A.

Also, the following are the properties of transpose with operations:

• (AT )T = A,

• (A+B)T = AT +BT ,

• (AB)T = BTAT .

Proof. We’ll prove some of them, the others are exercises.

• (AT )T = A

Let A = [aij] be an m × n matrix, then AT has size n × m, so (AT )T has dimension
m×n. Thus, (AT )T and A have the same dimensions. Also, AT = [(aij)

T ], and hence
(AT )T = [((aij)

T )T ]. Observe that ((aij)T )T = (aji)
T = aji. Thus, (AT )T and A have

the same entries.

• (AB)T = BTAT

Let A = [aij] be an m × n matrix, and B = [bij] be an n × p matrix. Then AB is an
m × p matrix, so (AB)T is a p ×m matrix. On the other hand, BT is a p × n matrix
and AT is an n×m matrix, so BTAT is a p×m matrix. Thus, (AB)T and BTAT have
the same dimensions.

Let 1 ≤ i ≤ p and 1 ≤ j ≤ m. We want to show that the ijth entries of (AB)T and
BTAT are equal. Now, we have the following:

1. ((AB)T )ij = (AB)ji =
∑n

k=1 ajkbki

2. (BTAT )ij =
∑n

k=1(B
T )ik(A

T )kj =
∑n

k=1(B)ki(A)jk =
∑n

k=1 bkiajk

Clearly, last expressions on both are the same. So we have (AB)T = BTAT .

Proposition 1.1. The product of two lower (upper) triangular matrices is a lower (upper) trian-
gular matrix.

Proof. Exercise. This is Theorem 2.2.24, as presented in the textbook. While the proof is
available for reading, it is advisable to attempt solving it on your own first.
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1.5 Linear equations

Definition 1.10. An m × n system of linear equations is the list of m equations with n vari-
ables:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . . . . . . . . =
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

We call aij’s coefficients, xi’s variables (unknowns), and bi’s constants. If bi = 0 for all i,
then the system is called homogeneous. Otherwise, the system is nonhomogeneous.

We say an n-tuple (c1, c2, . . . , cn) is a solution for the system if this tuple satisfies each equa-
tions. If a system has at least one solution, it is called consistent. Otherwise, it is inconsistent.

Example. The following system is consistent because (x = 1, y = 3) gives a solution.

2x+ y = 5

−3x+ 6y = 15

Remark. We can write such a system using matrices. The matrix of coefficients of the
system is given by

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn

 .

The augmented matrix of the system is given by

A# =


a11 a12 . . . a1n | b1
a21 a22 . . . a2n | b2

...
... . . . ... | ...

am1 am2 . . . amn | bm

 .

Then we write such a system as follows, Ax = b where:
a11 a12 . . . a1n
a21 a22 . . . a2n

...
... . . . ...

am1 am2 . . . amn



x1

x2
...
xn

 =


b1
b2
...
bm

 .

This is called vector formulation of a system of linear equations.

During the lectures, we’ll answer such questions:
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• Does a system have a solution?

• If yes, then how many solutions are there?

• How we determine all the solutions?

For those who are interested in the geometry behind small cases, the following videos
provide, maybe too cartoonish :), but good references:

* Visualizing Linear Equations in Three Variables

https://www.youtube.com/watch?v=Wm27Y6hxbRs

* Types of Linear Systems in Three Variables

https://www.youtube.com/watch?v=WAzUwzV1F3g

1.6 Questions from the discussion sessions

The questions 2.1.10, 11, 18, 20, 22-27 from the textbook1

Some parts of the question 2.2.3 from the textbook

QUIZ : Posted on Blackboard and the course webpage.

1Differential Equations and Linear Algebra by Stephen Goode & Scott Annin
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