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10.1 Kernel and Range

We begin with the definitions.

Definition 10.1. Let T : V → W be a linear transformation. The set of vectors of V that is
mapped to the zero vector of W by T is called kernel of T , denoted as

Ker(T ) = {v ∈ V |T (v) = 0W}.

The range of the linear transformation T is the subset of W consisting of all transformed
vectors from V . We denote the range of T as

Ran(T ) = {T (v)|v ∈ V }.

Examples.

1. We consider the linear transformation T : P2(R) → R2 defined by

T (ax2 + bx+ c) = (2a, 3b).

For the given T , we find the kernel by solving

T (ax2 + bx+ c) = (0, 0),

which gives
(2a, 3b) = (0, 0).

This implies a = 0 and b = 0, with no restrictions on c. Hence, the kernel of T is
composed of all polynomials of the form 0x2 + 0x + c, where c is any real number.
Therefore,

Ker(T ) = {c : c ∈ R}.

For T (ax2 + bx+ c) = (2a, 3b), the range includes all ordered pairs in R2 of the form
(2a, 3b), where a and b are any real numbers. Since any vector in R2 can be written
like this, we have

Ran(T ) = R2.
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2. Consider the linear transformation S : M2(R) → R4 defined by the mapping

S

([
a b
c d

])
= (a+ b, c+ d, 0, 0).

To ascertain the kernel of S, we resolve the equation

S

([
a b
c d

])
= (0, 0, 0, 0),

yielding
(a+ b, c+ d, 0, 0) = (0, 0, 0, 0).

This necessitates a + b = 0 and c + d = 0, without imposing any further constraints
upon a, b, c, and d. Consequently, the kernel of S is constituted by all 2× 2 matrices[
a b
c d

]
satisfying a = −b and c = −d.

Ker(S) =
{[

a −a
c −c

]
: a, c ∈ R

}
.

Given the definition of S, it is evident that the range includes all vectors in R4 of the
form (a+ b, c+ d, 0, 0), where a, b, c, and d are arbitrary real numbers. Thus,

Ran(S) = {(x, y, 0, 0) : x, y ∈ R}.

3. We examine the linear transformation U : R2 → R3 defined by

U(a, b) = (a, b, a+ b).

To find the kernel of U , we set

U(a, b) = (0, 0, 0),

which leads to the system of equations

a = 0,

b = 0,

a+ b = 0.

The solution to this system is a = 0 and b = 0, indicating that the kernel consists
only of the zero vector in R2. Thus,

Ker(U) = {(0, 0)}.

Given the definition of U , it is apparent that the range includes all vectors in R3 of
the form (a, b, a + b), where a and b are real numbers. Therefore, the range is the
entire R3, as every vector (x, y, z) in R3 can be written in the form (a, b, a + b) for
some a, b ∈ R with x = a, y = b, and z = a+ b. Hence,

Ran(U) = {(x, y, z) ∈ R3 : z = x+ y} = span{(1, 0, 1), (0, 1, 1)}.
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The following result is easy but important.

Theorem 10.1. Let T ;V → W be a linear transformation. Then Ker(T ) is a subspace of V , and
Ran(T ) is a subspace of W .

Proof. Exercise.

Remark. Now, consider a linear transformation T from Rn to Rm. Recall that it means
that there is an m × n matrix A such that T (x) = Ax. Therefore, we can make following
observations:

• Ker(T) = nullspace(A). The kernel of T , denoted Ker(T ), is the set of all vectors
x ∈ Rn for which T (x) = 0 in Rm, where 0 is the zero vector. By the definition of T ,
we have:

T (x) = Ax = 0.

This equation signifies that x is in the null space of A, which is the set of all vectors
that, when multiplied by A, yield the zero vector. Hence,

Ker(T ) = {x ∈ Rn : Ax = 0} = nullspace(A).

• Ran(T) = colspace(A). The range of T , denoted Ran(T ), consists of all vectors in
Rm that can be expressed as T (x) for some x ∈ Rn. Given T (x) = Ax, every vector in
the range of T is a linear combination of the columns of A, since the multiplication
of A by x produces such a linear combination. Therefore, the range of T corresponds
to the set of all possible linear combinations of the columns of A, which is precisely
the column space of A. Thus,

Ran(T ) = {Ax : x ∈ Rn} = colspace(A).

Examples.

1. Consider the linear transformation T1 : R2 → R2 defined by the matrix

A1 =

(
1 0
0 0

)
.

For any vector x = (x, y) in R2, we have

T1(x) = A1x =

(
x
0

)
.

Kernel of T1: The kernel of T1, Ker(T1) in this case is

Ker(T1) = {(x, y) ∈ R2 : x = 0} = {(0, y) : y ∈ R},

corresponding to the null space of A1.

Range of T1: The range of T1, Ran(T1), includes all vectors in the form of (x, 0),
which forms the x-axis in R2, and corresponds to the column space of A1.
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2. Consider the linear transformation T2 : R3 → R2 defined by the matrix

A2 =

(
1 2 3
4 5 6

)
.

The RREF of A2 is (
1 0 −1
0 1 2

)
.

This indicates that the first two columns of A2 are linearly independent and span
the column space of A2, which constitutes the range of T2.

Therefore, the range (column space) of T2 is spanned by the vectors(
1
4

)
and

(
2
5

)
,

and can be expressed as

Ran(T2) = Span {(1, 4), (2, 5)} .

To find the kernel of T2, we solve the system A2x = 0, which leads to the following
relations:

x = z,

y = −2z.

Thus, the kernel of T2 is spanned by the vector (1,−2, 1), indicating that

Ker(T2) = {λ(1,−2, 1) : λ ∈ R}.

3. Consider the matrix

A =

1 0 3
2 1 4
3 1 7


and the linear transformation T : R3 → R3 defined by T (x) = Ax.

The RREF of A is 1 0 3
0 1 −2
0 0 0

 .

The kernel of T is given by the solution set to Ax = 0, leading to the relations
x = −3z and y = 2z. Therefore, the kernel of T can be expressed as

Ker(T ) = {z(−3, 2, 1) : z ∈ R}.

This indicates that the kernel is spanned by the vector (−3, 2, 1), and is a one-dimensional
subspace of R3.
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The reduced row echelon form (RREF) of A reveals that the first two columns of A
are linearly independent. Thus, the range of T , or the column space of A, is spanned
by the vectors 1

2
3

 and

0
1
1

 .

Therefore, we can express the range as

Ran(T ) = Span {(1, 2, 3), (0, 1, 1)} ,

which constitutes a two-dimensional subspace of R3.

10.2 General Rank-Nullity Theorem

When T is a linear transformation from Rn to Rm with m × n matrix A, the rank-
nullity theorem says that rank(A) + nullity(A) = n. We want to generalize the idea for
arbitrary linear transformations. For general T : V → W , suppose that dim[V ] = n and
that dim[Ker(T )] = k. Then k-dimensions worth of the vectors in V are all mapped onto
the zero vector in W . Consequently, we only have n− k dimensions worth of vectors left
to map onto the remaining vectors in W . This idea gives the following theorem.

Theorem 10.2. If T : V → W is a linear transformation and V is finite-dimensional, then

dim[Ker(T )] + dim[Ran(T )] = dim[V ].

Proof. Omitted.

Example. Consider the linear transformation T : P3(R) → R3 defined by

T (ax3 + bx2 + cx+ d) = (a+ b, b+ c, c+ d).

The kernel of T , denoted as Ker(T ), consists of all polynomials p(x) = ax3+bx2+cx+d
such that T (p(x)) = (0, 0, 0). Setting the output of T equal to the zero vector gives us the
system of equations

a+ b = 0,

b+ c = 0,

c+ d = 0.

The system gives that Ker(T ) = {−dx3 + dx2 − dx+ d|d ∈ R} = span{−x3 + x2 − x+ 1}.

Since dim(Ker(T )) = 1 and dim(P3(R)) = 4, by the general rank-nullity theorem, we
have dim(Ran(T )) = 3. Since the only subspace of R3 with 3 dimension is R3, we get
Ran(T ) = R3.
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Example. Given a linear transformation T : V → W with dim[V ] = n and Ker(T ) =
{0}. Let {v1, v2, . . . , vn} be a basis for V . We want to show that {T (v1), T (v2), . . . , T (vn)} is
a basis for Ran(T ).

We will prove the set is linearly independent. By the general rank-nullity theorem, we
know dim[Ran(T )] = n, so we can conclude this linearly independent set is a basis for
Ran(T ).

Suppose there exist scalars c1, c2, . . . , cn such that

c1T (v1) + c2T (v2) + · · ·+ cnT (vn) = 0.

Since T is linear, we have

T (c1v1 + c2v2 + · · ·+ cnvn) = 0.

Because Ker(T ) = {0}, it implies

c1v1 + c2v2 + · · ·+ cnvn = 0.

Since {v1, v2, . . . , vn} are linearly independent, it follows that c1 = c2 = · · · = cn = 0.
Hence, {T (v1), T (v2), . . . , T (vn)} is linearly independent.

!!! In this example, if Ker(T ) ̸= {0}, there exists a non-zero vector v ∈ V such that
T (v) = 0. If v is part of a basis for V , then T (v) would be part of the corresponding set in
Ran(T ), but T (v) = 0 cannot be part of a basis since it does not contribute to the spanning
of Ran(T ) and disrupts linear independence. Thus, if Ker(T ) contains non-zero vectors,
the image under T of a basis for V will not necessarily form a basis for Ran(T ).

10.3 Properties of Linear Transformations

The primary goal of this section is to prove that any real vector space of finite dimen-
sion n is intrinsically isomorphic to Rn. This necessitates an exploration of the composi-
tion of linear transformations.

Definition 10.2. Let T1 : U → V and T2 : V → W be two linear transformations. We define the
composition, or product, T2T1 : U → W by

(T2T1)(u) = T2(T1(u)) for all u ∈ U.

U V W
T1 T2

u
T1(u)

T2(T1(u))

T2T1
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Theorem 10.3. If T1 : U → V and T2 : V → W are two linear transformations, then T2T1 :
U → W is also a linear transformation.

Proof. Exercise.

Examples.

1. Let T1 : Rn → Rm and T2 : Rm → Rp be linear transformations with matrices A and
B, respectively.

From the definition, for any vector x in Rn, we have

(T2T1)(x) = T2(T1(x)) = T2(Ax) = B(Ax) = (BA)x.

Consequently, T2T1 is the linear transformation with matrix BA. Note that A is an
m×n matrix and B is a p×m matrix, so that the matrix product BA is defined, with
size p× n.

2. Let T1 : Mn(R) → Mn(R) and T2 : Mn(R) → R be the linear transformations defined
by

T1(A) = A+ AT , T2(A) = tr(A).

In this case, T2T1 : Mn(R) → R is defined by

(T2T1)(A) = T2(T1(A)) = T2(A+ AT ) = tr(A+ AT ).

This can be written in the equivalent form

(T2T1)(A) = 2tr(A).

3. Let T1 : Mn(R) → Mn(R) and T2 : Mn(R) → Mn(R) be the linear transformations
defined by

T1(A) = A− AT

and
T2(A) = A+ AT .

We want to show that T2T1 is the zero transformation.

We compute T2(T1(A)):

T2(T1(A)) = T2(A− AT )

= (A− AT ) + (A− AT )T

= (A− AT ) + (AT − (AT )T )

= A− AT + AT − A

= 0.
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The following definitions are very common for any algebraic structures. We focus on
linear transformations.

Definition 10.3. A linear transformation T : V → W is said to be

1. one-to-one if distinct elements in V are mapped via T to distinct elements in W ; that is,
whenever v1 ̸= v2 in V , we have T (v1) ̸= T (v2), or equivalently, whenever T (v1) = T (v2),
we have v1 = v2.

2. onto if the range of T is the whole of W ; that is, if every w ∈ W is the image under T of at
least one vector v ∈ V .

3. invertible if T is both one-to-one and onto. Then the linear transformation T−1 : W → V
defined by

T−1(w) = v if and only if w = T (v)

is called the inverse transformation to T .

Let V and W be vector spaces. If there exists a linear transformation T : V → W that is invertible,
we call T an isomorphism, and we say that V and W are isomorphic vector spaces, written
V ∼= W .

Theorem 10.4. Let T : V → W be a linear transformation. Then T is one-to-one if and only if
Ker(T ) = {0}.

Proof. Since T is a linear transformation, we have T (0) = 0. Thus, if T is one-to-one, there
can be no other vector v in V satisfying T (v) = 0, and so, Ker(T ) = {0}. Conversely,
suppose that Ker(T ) = {0}. If v1 ̸= v2, then v1 − v2 ̸= 0, and therefore since Ker(T ) = {0},
T (v1 − v2) ̸= 0. Hence, by the linearity of T , T (v1) − T (v2) ̸= 0, or equivalently, T (v1) ̸=
T (v2). Thus, if Ker(T ) = {0}, then T is one-to-one. □

Remark. In summary, we have the following rules :

T : V → W is one-to-one ⇔ Ker(T ) = {0}

T : V → W is onto ⇔ Ran(T ) = W

The following theorem gives the relationship between one-to-one and/or linear trans-
formation from V to W and the dimensions of V and W .

Theorem 10.5. Let T : V → W be a linear transformation, and assume that V and W are both
finite-dimensional. Then

1. If T is one-to-one, then dim[V ] ≤ dim[W ].

2. If T is onto, then dim[V ] ≥ dim[W ].

3. If T is one-to-one and onto, then dim[V ] = dim[W ].
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Proof. Exercise. Use the general rank-nullity theorem.

The last result for this section combines all previous results and provides new charac-
terizations for invertible matrices.

Theorem 10.6. Let A be an n× n matrix with real elements, and let T : Rn → Rn be the matrix
transformation defined by T (x) = Ax. The following conditions are equivalent:

1) A is invertible.

17) T is one-to-one.

18) T is onto.

19) T is an isomorphism.

Proof. By the Invertible Matrix Theorem, A is invertible if and only if nullspace(A) = {0}.
This is equivalent to the statement that Ker(T ) = {0}, and that this is equivalent to the
statement that T is one-to-one.

Hence, (1) and (17) are equivalent. Now (17) and (18) are equivalent by the general
rank-nullity theorem, and (17) and (18) together are equivalent to (19) by the definition of
an isomorphism.

Examples.

1. T (x) = Ax, where A =

12
3

, find Ker(T ) and Ran(T ), and hence, determine whether

the given transformation is one-to-one, onto, both, or neither. If T−1 exists, find it.

Solution. We already know Ran(T ) = colspace(A) = span{(1, 2, 3)}. Since this is one dimen-
sional vector space, it cannot be R3, namely, Ran(T ) ̸= R3, so T is not onto. By
general rank-nullity theorem dim(Ker(T )) = 0 which means Ker(T ) = {0}, so T is
one-to-one. Since T is not onto, it cannot be invertible.

2. T (x) = Ax, where A =

[
4 2
1 3

]
, find Ker(T ) and Ran(T ), and hence, determine

whether the given transformation is one-to-one, onto, both, or neither. If T−1 exists,
find it.

Solution. Since det(A) = 10 ̸= 0, the matrix A is invertible. Therefore, Ker(T ) = nullspace(A) =
{0} and hence Ran(T ) = colspace(A) = R2. It means that T is both one-to-one
and onto, and so T is invertible. Its inverse given by the matrix transformation

A−1x =

[
3
10

− 2
10

− 1
10

4
10

]
x.
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3. T (x) = Ax, where A =

[
1 2 −1
2 5 1

]
, find Ker(T ) and Ran(T ), and hence, determine

whether the given transformation is one-to-one, onto, both, or neither. If T−1 exists,
find it.

Solution. The RREF form of A is
[
1 0 −7
0 1 3

]
. Then Ran(T ) = colspace(A) = {(1, 2), (2, 5)},

and since this has dimension 2, we get Ran(T ) = R2. Thus, T is onto. On the other
hand, Ker(T ) = nullspace(A) = {(7z,−3z, z)|z ∈ R} ≠ {0}, so T is not one-to-one.
Therefore, T is not invertible.

4. Define T : P1(R) → P1(R) by

T (ax+ b) = (2b− a)x+ (b+ a).

Show that T is both one-to-one and onto, and find T−1.

Solution. We have

Ker(T ) = {ax+ b
∣∣∣ (2b− a)x+ (b+ a) = 0} = {ax+ b

∣∣∣ (2b− a) = 0 and (b+ a) = 0}.

It is easy to see that such a and b must be zero, so Ker(T ) = {0}. By general rank-
nullity theorem, dim(Ran(T )) = 2. Since dim(P1(R)) = 2, we get Ran(T ) = P1(R).
Since T is both one-to-one and onto, it is invertible. The inverse T−1 is computed as
follows: we know if T (ax + b) = cx + d, then T−1(cx + d) = ax + b. Form the first
equation, we have

cx+ d = (2b− a)x+ (b+ a).

Therefore, c = 2b− a and d = b+ a. After solving these, we observe that b = c+d
3

and
a = 2d−c

3
, i.e.

T−1(cx+ d) = (
2d− c

3
)x+

c+ d

3
.

5. Let V denote the vector space of 2×2 symmetric matrices and define T : V → P2(R)
by

T

([
a b
b c

])
= ax2 + bx+ c.

Determine whether T is one-to-one, onto, both, or neither. Find T−1 or explain why
it does not exist.

Solution. It is obvious that Ker(T ) = {0}, so dim(Ker(T )) = 0. Since dim(V ) = 3, by general
rank nullity theorem, we get dim(Ran(T ) = 3 which gives Ran(T ) = P2(R). Since T
is both one-to-one and onto, T is invertible. The inverse T−1 is given by:

T−1(ax2 + bx+ c) =

[
a b
b c

]
.

Example. Let T1 : V1 → V2 and T2 : V2 → V3 be linear transformations.
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(a) Prove that if T1 and T2 are both one-to-one, then so is T2T1 : V1 → V3.

Proof. Assume T1 and T2 are both one-to-one. Suppose T2T1(v1) = T2T1(v2). Since T2

is one-to-one, this implies that T1(v1) = T1(v2). And since T1 is also one-to-one, we
have v1 = v2, thus T2T1 is one-to-one.

(b) Prove that if T1 and T2 are both onto, then so is T2T1 : V1 → V3.

Proof. Assume T1 and T2 are both onto. Let w ∈ V3. Since T2 is onto, there exists
a v2 ∈ V2 such that T2(v2) = w. Since T1 is onto, there exists a v1 ∈ V1 such that
T1(v1) = v2. Therefore, T2T1(v1) = w, thus T2T1 is onto.

(c) Prove that if T1 and T2 are both isomorphisms, then so is T2T1 : V1 → V3.

Proof. From parts (a) and (b), if T1 and T2 are both one-to-one and onto, then T2T1

is both one-to-one and onto, which are the necessary and sufficient conditions for a
transformation to be an isomorphism.

Example. Let T1 : V1 → V2 and T2 : V2 → V3 be linear transformations.

(a) Prove that if T2T1 : V1 → V3 is one-to-one, then so is T1.

Proof. Exercise.

(b) Prove that if T2T1 : V1 → V3 is onto, then so is T2.

Proof. Exercise.

We finalize this section with our primary goal:

Theorem 10.7. If two vector spaces V and W have the same finite dimension, then they are
isomorphic.

Proof. Let V and W be vector spaces over the same field, and suppose that dim(V ) =
dim(W ) = n. Let {v1, v2, . . . , vn} be a basis for V and {w1, w2, . . . , wn} be a basis for W .

Define a linear transformation T : V → W by mapping the basis vectors of V to the
basis vectors of W as follows:

T (vi) = wi for all i = 1, 2, . . . , n.

Since the basis vectors vi span V , any vector v ∈ V can be uniquely expressed as a
linear combination of the basis vectors:

v = a1v1 + a2v2 + · · ·+ anvn

where a1, a2, . . . , an are scalars in the field over which the vector spaces are defined.
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The transformation T then maps v to a unique vector in W as follows:

T (v) = a1T (v1) + a2T (v2) + · · ·+ anT (vn) = a1w1 + a2w2 + · · ·+ anwn.

This map is linear by construction, one-to-one because different vectors in V have
different coefficients in the linear combination of basis vectors (and thus map to different
vectors in W ), and onto because every vector in W can be reached by the image of some
vector in V (since the wi’s form a basis for W ).

Therefore, T is an isomorphism, and V and W are isomorphic vector spaces.

Corollary 10.1. If V is a vector space of dimension n, then V is isomorphic to Rn.

Proof. Take W = Rn in the previous theorem.

10.4 The Matrix of a Linear Transformation

In earlier discussions, we established that any linear transformation T : Rn → Rm

corresponds to an m×n matrix. We now aim to extend this association to arbitrary vector
spaces. Let V and W be vector spaces of dimensions n and m, respectively. By selecting
ordered bases B for V and C for W , every linear transformation T : V → W can be
uniquely represented by an m× n matrix. This matrix encapsulates all vital properties of
T , encapsulating the essence of linear transformations between finite-dimensional vector
spaces within matrix algebra.

Definition 10.4. Let V and W be vector spaces with ordered bases B = {v1, v2, . . . , vn} and
C = {w1, w2, . . . , wm}, respectively, and let T : V → W be a linear transformation. The m × n
matrix

[T ]BC = ([T (v1)]C , [T (v2)]C , . . . , [T (vn)]C)

is called the matrix representation of T relative to the bases B and C. In case V = W and
B = C, we refer to [T ]BB simply as the matrix representation of T relative to the basis B.

Example. Let T : P2(R) → R2 be defined by the transformation

T (a+ bx+ cx2) = (a− 3c, 2a+ b− 2c).

We want to find the matrix representation of T with respect to the bases:

(a) B = {1, x, x2};C = {(1, 0), (0, 1)}.

(b) B = {1, 1 + x, 1 + x+ x2};C = {(1,−1), (2, 1)}.

(a) For the basis B = {1, x, x2} and C = {(1, 0), (0, 1)}, we find the matrix representation
of T by applying T to each element of the basis B.
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Applying T to 1, x, and x2 respectively, we get:

T (1) = T (1 + 0 · x+ 0 · x2) = (1− 0, 2 · 1 + 0− 0) = (1, 2),

T (x) = T (0 + 1 · x+ 0 · x2) = (0− 0, 2 · 0 + 1− 0) = (0, 1),

T (x2) = T (0 + 0 · x+ 1 · x2) = (0− 3, 2 · 0 + 0− 2) = (−3,−2).

Thus, the matrix representation of T with respect to bases B and C is:

[T ]BC =

[
1 0 −3
2 1 −2

]
.

(b) For the basis B = {1, 1 + x, 1 + x+ x2} and C = {(1,−1), (2, 1)}, we need to express
the transformed vectors in terms of the basis C.

We start by applying T to each element of the basis B:

T (1) = (1− 0, 2 + 0− 0),

T (1 + x) = (1− 0, 2 + 1− 0),

T (1 + x+ x2) = (1− 3, 2 + 1− 2).

Now we must express each result as a linear combination of vectors in C.

Let (x1, y1), (x2, y2), (x3, y3) be the coordinates of T (1), T (1+x), T (1+x+x2) in the ba-
sis C, respectively. We solve the following system of equations for each transformed
vector:

x1 · (1,−1) + y1 · (2, 1) = (1, 2) ⇒ x1 = −1, y1 = 1

x2 · (1,−1) + y2 · (2, 1) = (1, 3) ⇒ x2 = −5

3
, y2 =

4

3

x3 · (1,−1) + y3 · (2, 1) = (−2, 1) ⇒ x3 = −4

3
, y3 = −1

3

Thus, the matrix representation of T with respect to bases B and C is:

[T ]BC =

[
1 −5

3
−4

3

1 4
3

−1
3

]
.
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