Linear Algebra & Differential Equations

Elif Uskuplu

If you see any mistake, please email me (euskuplu@usc.edu).

10 Week 10

10.1 Kernel and Range

We begin with the definitions.

Definition 10.1. Let $T: V \to W$ be a linear transformation. The set of vectors of V that is *mapped to the zero vector of* W *by* T *is called kernel of* T*, denoted as*

$$
Ker(T) = \{ \mathbf{v} \in V | T(\mathbf{v}) = \mathbf{0}_W \}.
$$

The range of the linear transformation T *is the subset of* W *consisting of all transformed vectors from* V *. We denote the range of* T *as*

$$
Ran(T) = \{T(\mathbf{v})|\mathbf{v} \in V\}.
$$

Examples.

1. We consider the linear transformation $T: P_2(\mathbb{R}) \to \mathbb{R}^2$ defined by

 $T(ax^2 + bx + c) = (2a, 3b).$

For the given T , we find the kernel by solving

$$
T(ax^2 + bx + c) = (0, 0),
$$

which gives

$$
(2a, 3b) = (0, 0).
$$

This implies $a = 0$ and $b = 0$, with no restrictions on c. Hence, the kernel of T is composed of all polynomials of the form $0x^2 + 0x + c$, where c is any real number. Therefore,

$$
\mathbf{Ker}(T) = \{c : c \in \mathbb{R}\}.
$$

For $T(ax^2 + bx + c) = (2a, 3b)$, the range includes all ordered pairs in \mathbb{R}^2 of the form $(2a, 3b)$, where a and b are any real numbers. Since any vector in \mathbb{R}^2 can be written like this, we have

$$
\text{Ran}(T) = \mathbb{R}^2.
$$

2. Consider the linear transformation $S: M_2(\mathbb{R}) \to \mathbb{R}^4$ defined by the mapping

$$
S\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a+b, c+d, 0, 0).
$$

To ascertain the kernel of S, we resolve the equation

$$
S\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (0,0,0,0),
$$

yielding

$$
(a + b, c + d, 0, 0) = (0, 0, 0, 0).
$$

This necessitates $a + b = 0$ and $c + d = 0$, without imposing any further constraints upon a, b, c , and d . Consequently, the kernel of S is constituted by all 2×2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ satisfying $a = -b$ and $c = -d$.

$$
\mathbf{Ker}(S) = \left\{ \begin{bmatrix} a & -a \\ c & -c \end{bmatrix} : a, c \in \mathbb{R} \right\}.
$$

Given the definition of S, it is evident that the range includes all vectors in \mathbb{R}^4 of the form $(a + b, c + d, 0, 0)$, where a, b, c , and d are arbitrary real numbers. Thus,

$$
Ran(S) = \{(x, y, 0, 0) : x, y \in \mathbb{R}\}.
$$

3. We examine the linear transformation $U:\mathbb{R}^2\to\mathbb{R}^3$ defined by

$$
U(a,b) = (a, b, a+b).
$$

To find the kernel of U , we set

$$
U(a, b) = (0, 0, 0),
$$

which leads to the system of equations

$$
a = 0,
$$

\n
$$
b = 0,
$$

\n
$$
a + b = 0.
$$

The solution to this system is $a = 0$ and $b = 0$, indicating that the kernel consists only of the zero vector in \mathbb{R}^2 . Thus,

$$
Ker(U) = \{(0,0)\}.
$$

Given the definition of U, it is apparent that the range includes all vectors in \mathbb{R}^3 of the form $(a, b, a + b)$, where a and b are real numbers. Therefore, the range is the entire \mathbb{R}^3 , as every vector (x, y, z) in \mathbb{R}^3 can be written in the form $(a, b, a + b)$ for some $a, b \in \mathbb{R}$ with $x = a$, $y = b$, and $z = a + b$. Hence,

$$
Ran(U) = \{(x, y, z) \in \mathbb{R}^3 : z = x + y\} = span\{(1, 0, 1), (0, 1, 1)\}.
$$

The following result is easy but important.

Theorem 10.1. Let $T: V \to W$ be a linear transformation. Then $Ker(T)$ is a subspace of V, and $Ran(T)$ *is a subspace of W.*

Proof. Exercise.

Remark. Now, consider a linear transformation T from \mathbb{R}^n to \mathbb{R}^m . Recall that it means that there is an $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x}$. Therefore, we can make following observations:

• Ker(T) = nullspace(A). The kernel of T, denoted $Ker(T)$, is the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ for which $T(\mathbf{x}) = \mathbf{0}$ in \mathbb{R}^m , where $\mathbf{0}$ is the zero vector. By the definition of T , we have:

$$
T(\mathbf{x}) = A\mathbf{x} = \mathbf{0}.
$$

This equation signifies that x is in the null space of A , which is the set of all vectors that, when multiplied by A , yield the zero vector. Hence,

$$
Ker(T) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \} = nullspace(A).
$$

• Ran(T) = colspace(A). The range of T, denoted $Ran(T)$, consists of all vectors in \mathbb{R}^m that can be expressed as $T(\mathbf{x})$ for some $\mathbf{x} \in \mathbb{R}^n$. Given $T(\mathbf{x}) = A\mathbf{x}$, every vector in the range of T is a linear combination of the columns of A , since the multiplication of A by x produces such a linear combination. Therefore, the range of T corresponds to the set of all possible linear combinations of the columns of A, which is precisely the column space of A. Thus,

$$
Ran(T) = \{Ax : \mathbf{x} \in \mathbb{R}^n\} = colspace(A).
$$

Examples.

1. Consider the linear transformation $T_1 : \mathbb{R}^2 \to \mathbb{R}^2$ defined by the matrix

$$
A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.
$$

For any vector $\mathbf{x} = (x, y)$ in \mathbb{R}^2 , we have

$$
T_1(\mathbf{x}) = A_1 \mathbf{x} = \begin{pmatrix} x \\ 0 \end{pmatrix}.
$$

Kernel of T_1 : The kernel of T_1 , $Ker(T_1)$ in this case is

$$
Ker(T_1) = \{(x, y) \in \mathbb{R}^2 : x = 0\} = \{(0, y) : y \in \mathbb{R}\},\
$$

corresponding to the null space of A_1 .

Range of T_1 : The range of T_1 , $Ran(T_1)$, includes all vectors in the form of $(x, 0)$, which forms the *x*-axis in \mathbb{R}^2 , and corresponds to the column space of A_1 .

2. Consider the linear transformation $T_2 : \mathbb{R}^3 \to \mathbb{R}^2$ defined by the matrix

$$
A_2 = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}.
$$

The RREF of A_2 is

$$
\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}.
$$

This indicates that the first two columns of A_2 are linearly independent and span the column space of A_2 , which constitutes the range of T_2 .

Therefore, the range (column space) of T_2 is spanned by the vectors

$$
\begin{pmatrix} 1 \\ 4 \end{pmatrix} \text{ and } \begin{pmatrix} 2 \\ 5 \end{pmatrix},
$$

and can be expressed as

$$
Ran(T_2) = \text{Span}\{(1,4), (2,5)\}.
$$

To find the kernel of T_2 , we solve the system A_2 **x** = 0, which leads to the following relations:

$$
x = z,
$$

$$
y = -2z.
$$

Thus, the kernel of T_2 is spanned by the vector $(1, -2, 1)$, indicating that

$$
Ker(T_2) = \{\lambda(1, -2, 1) : \lambda \in \mathbb{R}\}.
$$

3. Consider the matrix

$$
A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 4 \\ 3 & 1 & 7 \end{pmatrix}
$$

and the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(\mathbf{x}) = A\mathbf{x}$. The RREF of A is

$$
\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}.
$$

The kernel of T is given by the solution set to $Ax = 0$, leading to the relations $x = -3z$ and $y = 2z$. Therefore, the kernel of T can be expressed as

$$
Ker(T) = \{ z(-3, 2, 1) : z \in \mathbb{R} \}.
$$

This indicates that the kernel is spanned by the vector $(-3, 2, 1)$, and is a one-dimensional subspace of \mathbb{R}^3 .

The reduced row echelon form (RREF) of A reveals that the first two columns of A are linearly independent. Thus, the range of T , or the column space of A , is spanned by the vectors

$$
\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \text{ and } \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.
$$

Therefore, we can express the range as

$$
Ran(T) = \text{Span} \left\{ (1, 2, 3), (0, 1, 1) \right\},\
$$

which constitutes a two-dimensional subspace of \mathbb{R}^3 .

10.2 General Rank-Nullity Theorem

When T is a linear transformation from \mathbb{R}^n to \mathbb{R}^m with $m \times n$ matrix A, the ranknullity theorem says that $rank(A) + nullity(A) = n$. We want to generalize the idea for arbitrary linear transformations. For general $T: V \to W$, suppose that $\dim[V] = n$ and that $\dim [Ker(T)] = k$. Then k-dimensions worth of the vectors in V are all mapped onto the zero vector in W. Consequently, we only have $n - k$ dimensions worth of vectors left to map onto the remaining vectors in W. This idea gives the following theorem.

Theorem 10.2. If $T: V \to W$ *is a linear transformation and* V *is finite-dimensional, then*

$$
\dim [Ker(T)] + \dim [Ran(T)] = \dim [V].
$$

Proof. Omitted.

Example. Consider the linear transformation $T: P_3(\mathbb{R}) \to \mathbb{R}^3$ defined by

$$
T(ax^3 + bx^2 + cx + d) = (a + b, b + c, c + d).
$$

The kernel of T, denoted as $Ker(T)$, consists of all polynomials $p(x) = ax^3 + bx^2 + cx + d$ such that $T(p(x)) = (0, 0, 0)$. Setting the output of T equal to the zero vector gives us the system of equations

$$
a + b = 0,
$$

\n
$$
b + c = 0,
$$

\n
$$
c + d = 0.
$$

The system gives that $Ker(T) = \{-dx^3 + dx^2 - dx + d | d \in \mathbb{R}\} = span\{-x^3 + x^2 - x + 1\}.$

Since $\dim(Ker(T)) = 1$ and $\dim(P_3(\mathbb{R})) = 4$, by the general rank-nullity theorem, we have $\dim(Ran(T)) = 3$. Since the only subspace of \mathbb{R}^3 with 3 dimension is \mathbb{R}^3 , we get $Ran(T) = \mathbb{R}^3$.

Example. Given a linear transformation $T: V \to W$ with $dim[V] = n$ and $Ker(T) =$ $\{0\}$. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis for V. We want to show that $\{T(v_1), T(v_2), \ldots, T(v_n)\}$ is a basis for $\text{Ran}(T)$.

We will prove the set is linearly independent. By the general rank-nullity theorem, we know dim $[Ran(T)] = n$, so we can conclude this linearly independent set is a basis for $Ran(T)$.

Suppose there exist scalars c_1, c_2, \ldots, c_n such that

$$
c_1T(v_1) + c_2T(v_2) + \cdots + c_nT(v_n) = 0.
$$

Since T is linear, we have

$$
T(c_1v_1 + c_2v_2 + \cdots + c_nv_n) = 0.
$$

Because $Ker(T) = \{0\}$, it implies

$$
c_1v_1 + c_2v_2 + \cdots + c_nv_n = 0.
$$

Since $\{v_1, v_2, \ldots, v_n\}$ are linearly independent, it follows that $c_1 = c_2 = \cdots = c_n = 0$. Hence, $\{T(v_1), T(v_2), \ldots, T(v_n)\}\$ is linearly independent.

!!! In this example, if $\text{Ker}(T) \neq \{0\}$, there exists a non-zero vector $v \in V$ such that $T(v) = 0$. If v is part of a basis for V, then $T(v)$ would be part of the corresponding set in $\text{Ran}(T)$, but $T(v) = 0$ cannot be part of a basis since it does not contribute to the spanning of Ran(T) and disrupts linear independence. Thus, if $Ker(T)$ contains non-zero vectors, the image under T of a basis for V will not necessarily form a basis for $\text{Ran}(T)$.

10.3 Properties of Linear Transformations

The primary goal of this section is to prove that any real vector space of finite dimension *n* is intrinsically isomorphic to \mathbb{R}^n . This necessitates an exploration of the composition of linear transformations.

Definition 10.2. Let $T_1: U \to V$ and $T_2: V \to W$ be two linear transformations. We define the *composition, or product,* $T_2T_1: U \to W$ by

$$
(T_2T_1)(u) = T_2(T_1(u)) \quad \text{for all } u \in U.
$$

Theorem 10.3. *If* $T_1 : U \to V$ *and* $T_2 : V \to W$ *are two linear transformations, then* T_2T_1 : $U \rightarrow W$ *is also a linear transformation.*

Proof. Exercise.

Examples.

1. Let $T_1 : \mathbb{R}^n \to \mathbb{R}^m$ and $T_2 : \mathbb{R}^m \to \mathbb{R}^p$ be linear transformations with matrices A and B, respectively.

From the definition, for any vector **x** in \mathbb{R}^n , we have

$$
(T_2T_1)(\mathbf{x}) = T_2(T_1(\mathbf{x})) = T_2(A\mathbf{x}) = B(A\mathbf{x}) = (BA)\mathbf{x}.
$$

Consequently, T_2T_1 is the linear transformation with matrix BA . Note that A is an $m \times n$ matrix and B is a $p \times m$ matrix, so that the matrix product BA is defined, with size $p \times n$.

2. Let $T_1: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ and $T_2: M_n(\mathbb{R}) \to \mathbb{R}$ be the linear transformations defined by

$$
T_1(A) = A + A^T
$$
, $T_2(A) = tr(A)$.

In this case, T_2T_1 : $M_n(\mathbb{R}) \to \mathbb{R}$ is defined by

$$
(T_2T_1)(A) = T_2(T_1(A)) = T_2(A + A^T) = \text{tr}(A + A^T).
$$

This can be written in the equivalent form

$$
(T_2T_1)(A) = 2\text{tr}(A).
$$

3. Let $T_1: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ and $T_2: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ be the linear transformations defined by

$$
T_1(A) = A - A^T
$$

and

$$
T_2(A) = A + A^T.
$$

We want to show that T_2T_1 is the zero transformation. We compute $T_2(T_1(A))$:

$$
T_2(T_1(A)) = T_2(A - A^T)
$$

= $(A - A^T) + (A - A^T)^T$
= $(A - A^T) + (A^T - (A^T)^T)$
= $A - A^T + A^T - A$
= 0.

The following definitions are very common for any algebraic structures. We focus on linear transformations.

Definition 10.3. A linear transformation $T: V \to W$ is said to be

- *1. one-to-one if distinct elements in* V *are mapped via* T *to distinct elements in* W*; that is, whenever* $v_1 \neq v_2$ *in V*, we have $T(v_1) \neq T(v_2)$, or equivalently, whenever $T(v_1) = T(v_2)$, *we have* $v_1 = v_2$ *.*
- *2. onto* if the range of T is the whole of W; that is, if every $w \in W$ is the image under T of at *least one vector* $v \in V$.
- 3. invertible if T is both one-to-one and onto. Then the linear transformation $T^{-1}: W \to V$ *defined by*

 $T^{-1}(w) = v$ if and only if $w = T(v)$

is called the inverse transformation to T*.*

Let V and *W* be vector spaces. If there exists a linear transformation $T: V \to W$ that is invertible, *we call* T *an isomorphism, and we say that* V *and* W *are isomorphic vector spaces, written* $V \cong W$.

Theorem 10.4. Let $T: V \to W$ be a linear transformation. Then T is one-to-one if and only if $Ker(T) = \{0\}.$

Proof. Since T is a linear transformation, we have $T(0) = 0$. Thus, if T is one-to-one, there can be no other vector v in V satisfying $T(v) = 0$, and so, $Ker(T) = \{0\}$. Conversely, suppose that Ker(T) = {0}. If $v_1 \neq v_2$, then $v_1 - v_2 \neq 0$, and therefore since Ker(T) = {0}, $T(v_1 - v_2) \neq 0$. Hence, by the linearity of T, $T(v_1) - T(v_2) \neq 0$, or equivalently, $T(v_1) \neq 0$ $T(v_2)$. Thus, if $\text{Ker}(T) = \{0\}$, then T is one-to-one. \Box \Box

Remark. In summary, we have the following rules :

 $T: V \to W$ is one-to-one $\Leftrightarrow Ker(T) = \{0\}$ $T: V \to W$ is onto $\Leftrightarrow Ran(T) = W$

The following theorem gives the relationship between one-to-one and/or linear transformation from V to W and the dimensions of V and W .

Theorem 10.5. Let $T: V \to W$ be a linear transformation, and assume that V and W are both *finite-dimensional. Then*

- *1.* If T is one-to-one, then $dim[V] \leq dim[W]$.
- 2. If T is onto, then $dim[V] \geq dim[W]$.
- *3.* If T is one-to-one and onto, then $dim[V] = dim[W]$.

Proof. Exercise. Use the general rank-nullity theorem.

The last result for this section combines all previous results and provides new characterizations for invertible matrices.

Theorem 10.6. Let A be an $n \times n$ matrix with real elements, and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the matrix *transformation defined by* $T(\mathbf{x}) = A\mathbf{x}$. The following conditions are equivalent:

- *1)* A *is invertible.*
- *17)* T *is one-to-one.*
- *18)* T *is onto.*
- *19)* T *is an isomorphism.*

Proof. By the Invertible Matrix Theorem, A is invertible if and only if nullspace(A) = {0}. This is equivalent to the statement that $Ker(T) = \{0\}$, and that this is equivalent to the statement that T is one-to-one.

Hence, (1) and (17) are equivalent. Now (17) and (18) are equivalent by the general rank-nullity theorem, and (17) and (18) together are equivalent to (19) by the definition of an isomorphism. \Box

Examples.

1.
$$
T(\mathbf{x}) = A\mathbf{x}
$$
, where $A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, find $\text{Ker}(T)$ and $\text{Ran}(T)$, and hence, determine whether

the given transformation is one-to-one, onto, both, or neither. If T^{-1} exists, find it.

- Solution. We already know $Ran(T) = colspace(A) = span\{(1, 2, 3)\}\)$. Since this is one dimensional vector space, it cannot be \mathbb{R}^3 , namely, $Ran(T) \neq \mathbb{R}^3$, so T is not onto. By general rank-nullity theorem $dim(Ker(T)) = 0$ which means $Ker(T) = \{0\}$, so T is one-to-one. Since T is not onto, it cannot be invertible.
	- 2. $T(\mathbf{x}) = A\mathbf{x}$, where $A =$ $\begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$, find Ker(T) and Ran(T), and hence, determine whether the given transformation is one-to-one, onto, both, or neither. If T^{-1} exists, find it.
- Solution. Since $det(A) = 10 \neq 0$, the matrix A is invertible. Therefore, $Ker(T) = nullspace(A) =$ ${0}$ and hence $Ran(T) = colspace(A) = \mathbb{R}^2$. It means that T is both one-to-one and onto, and so T is invertible. Its inverse given by the matrix transformation A^{-1} **x** = $\begin{bmatrix} \frac{3}{10} & -\frac{2}{10} \\ 0 & 1 \end{bmatrix}$ $\frac{10}{-10}$ $\frac{10}{10}$ 10 4 $\begin{bmatrix} -\frac{2}{10} \\ \frac{4}{10} \end{bmatrix}$ x.

3. $T(\mathbf{x}) = A\mathbf{x}$, where $A =$ $\begin{bmatrix} 1 & 2 & -1 \\ 2 & 5 & 1 \end{bmatrix}$, find Ker(*T*) and Ran(*T*), and hence, determine whether the given transformation is one-to-one, onto, both, or neither. If T^{-1} exists, find it.

Solution. The RREF form of A is $\begin{bmatrix} 1 & 0 & -7 \\ 0 & 1 & 3 \end{bmatrix}$. Then $Ran(T) = colspace(A) = \{(1, 2), (2, 5)\},$ and since this has dimension 2, we get $Ran(T) = \mathbb{R}^2$. Thus, T is onto. On the other hand, $Ker(T) = nullspace(A) = \{(7z, -3z, z)|z \in \mathbb{R}\}\neq \{0\}$, so T is not one-to-one. Therefore, T is not invertible.

4. Define $T: P_1(\mathbb{R}) \to P_1(\mathbb{R})$ by

$$
T(ax + b) = (2b - a)x + (b + a).
$$

Show that T is both one-to-one and onto, and find T^{-1} .

Solution. We have

$$
Ker(T) = \{ax + b \mid (2b - a)x + (b + a) = 0\} = \{ax + b \mid (2b - a) = 0 \text{ and } (b + a) = 0\}.
$$

It is easy to see that such a and b must be zero, so $Ker(T) = \{0\}$. By general ranknullity theorem, $dim(Ran(T)) = 2$. Since $dim(P_1(\mathbb{R})) = 2$, we get $Ran(T) = P_1(\mathbb{R})$. Since T is both one-to-one and onto, it is invertible. The inverse T^{-1} is computed as follows: we know if $T(ax + b) = cx + d$, then $T^{-1}(cx + d) = ax + b$. Form the first equation, we have

$$
cx + d = (2b - a)x + (b + a).
$$

Therefore, $c = 2b - a$ and $d = b + a$. After solving these, we observe that $b = \frac{c + d}{3}$ $\frac{+d}{3}$ and $a = \frac{2d-c}{3}$ $\frac{a-c}{3}$, i.e.

$$
T^{-1}(cx+d) = \left(\frac{2d-c}{3}\right)x + \frac{c+d}{3}.
$$

5. Let *V* denote the vector space of 2×2 symmetric matrices and define $T : V \to P_2(\mathbb{R})$ by

$$
T\left(\begin{bmatrix} a & b \\ b & c \end{bmatrix}\right) = ax^2 + bx + c.
$$

Determine whether T is one-to-one, onto, both, or neither. Find T^{-1} or explain why it does not exist.

Solution. It is obvious that $Ker(T) = \{0\}$, so $dim(Ker(T)) = 0$. Since $dim(V) = 3$, by general rank nullity theorem, we get $dim(Ran(T) = 3$ which gives $Ran(T) = P_2(\mathbb{R})$. Since T is both one-to-one and onto, T is invertible. The inverse T^{-1} is given by:

$$
T^{-1}(ax^2 + bx + c) = \begin{bmatrix} a & b \\ b & c \end{bmatrix}.
$$

Example. Let $T_1 : V_1 \to V_2$ and $T_2 : V_2 \to V_3$ be linear transformations.

(a) Prove that if T_1 and T_2 are both one-to-one, then so is $T_2T_1 : V_1 \to V_3$.

Proof. Assume T_1 and T_2 are both one-to-one. Suppose $T_2T_1(v_1) = T_2T_1(v_2)$. Since T_2 is one-to-one, this implies that $T_1(v_1) = T_1(v_2)$. And since T_1 is also one-to-one, we have $v_1 = v_2$, thus T_2T_1 is one-to-one. \Box

(b) Prove that if T_1 and T_2 are both onto, then so is $T_2T_1 : V_1 \to V_3$.

Proof. Assume T_1 and T_2 are both onto. Let $w \in V_3$. Since T_2 is onto, there exists a $v_2 \in V_2$ such that $T_2(v_2) = w$. Since T_1 is onto, there exists a $v_1 \in V_1$ such that $T_1(v_1) = v_2$. Therefore, $T_2T_1(v_1) = w$, thus T_2T_1 is onto. $\|$

(c) Prove that if T_1 and T_2 are both isomorphisms, then so is $T_2T_1 : V_1 \rightarrow V_3$.

Proof. From parts (a) and (b), if T_1 and T_2 are both one-to-one and onto, then T_2T_1 is both one-to-one and onto, which are the necessary and sufficient conditions for a transformation to be an isomorphism. \Box

Example. Let $T_1 : V_1 \to V_2$ and $T_2 : V_2 \to V_3$ be linear transformations.

(a) Prove that if $T_2T_1 : V_1 \to V_3$ is one-to-one, then so is T_1 .

Proof. Exercise.

(b) Prove that if $T_2T_1 : V_1 \to V_3$ is onto, then so is T_2 .

Proof. Exercise.

We finalize this section with our primary goal:

Theorem 10.7. *If two vector spaces* V *and* W *have the same finite dimension, then they are isomorphic.*

Proof. Let V and W be vector spaces over the same field, and suppose that $dim(V)$ = $\dim(W) = n$. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis for V and $\{w_1, w_2, \ldots, w_n\}$ be a basis for W.

Define a linear transformation $T: V \to W$ by mapping the basis vectors of V to the basis vectors of W as follows:

$$
T(v_i) = w_i \quad \text{for all} \quad i = 1, 2, \dots, n.
$$

Since the basis vectors v_i span V, any vector $v \in V$ can be uniquely expressed as a linear combination of the basis vectors:

$$
v = a_1v_1 + a_2v_2 + \cdots + a_nv_n
$$

where a_1, a_2, \ldots, a_n are scalars in the field over which the vector spaces are defined.

 \Box

The transformation T then maps v to a unique vector in W as follows:

$$
T(v) = a_1 T(v_1) + a_2 T(v_2) + \cdots + a_n T(v_n) = a_1 w_1 + a_2 w_2 + \cdots + a_n w_n.
$$

This map is linear by construction, one-to-one because different vectors in V have different coefficients in the linear combination of basis vectors (and thus map to different vectors in W), and onto because every vector in W can be reached by the image of some vector in V (since the w_i 's form a basis for W).

Therefore, T is an isomorphism, and V and W are isomorphic vector spaces. \Box

Corollary 10.1. If V is a vector space of dimension n, then V is isomorphic to \mathbb{R}^n .

Proof. Take $W = \mathbb{R}^n$ in the previous theorem.

\Box

10.4 The Matrix of a Linear Transformation

In earlier discussions, we established that any linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ corresponds to an $m \times n$ matrix. We now aim to extend this association to arbitrary vector spaces. Let V and W be vector spaces of dimensions n and m , respectively. By selecting ordered bases B for V and C for W, every linear transformation $T: V \to W$ can be uniquely represented by an $m \times n$ matrix. This matrix encapsulates all vital properties of T, encapsulating the essence of linear transformations between finite-dimensional vector spaces within matrix algebra.

Definition 10.4. Let V and W be vector spaces with ordered bases $B = \{v_1, v_2, \ldots, v_n\}$ and $C = \{w_1, w_2, \ldots, w_m\}$, respectively, and let $T : V \to W$ be a linear transformation. The $m \times n$ *matrix*

$$
[T]_{C}^{B} = ([T(v_1)]_{C}, [T(v_2)]_{C}, \ldots, [T(v_n)]_{C})
$$

is called the matrix representation of T relative to the bases B and C. In case $V = W$ *and* $B = C$, we refer to $[T]_B^B$ simply as the **matrix representation of** T relative to the basis B .

Example. Let $T: P_2(\mathbb{R}) \to \mathbb{R}^2$ be defined by the transformation

$$
T(a + bx + cx^{2}) = (a - 3c, 2a + b - 2c).
$$

We want to find the matrix representation of T with respect to the bases:

- (a) $B = \{1, x, x^2\}; C = \{(1, 0), (0, 1)\}.$
- (b) $B = \{1, 1 + x, 1 + x + x^2\}; C = \{(1, -1), (2, 1)\}.$
- (a) For the basis $B = \{1, x, x^2\}$ and $C = \{(1, 0), (0, 1)\}$, we find the matrix representation of T by applying T to each element of the basis B .

Applying T to 1, x , and x^2 respectively, we get:

$$
T(1) = T(1 + 0 \cdot x + 0 \cdot x^2) = (1 - 0, 2 \cdot 1 + 0 - 0) = (1, 2),
$$

\n
$$
T(x) = T(0 + 1 \cdot x + 0 \cdot x^2) = (0 - 0, 2 \cdot 0 + 1 - 0) = (0, 1),
$$

\n
$$
T(x^2) = T(0 + 0 \cdot x + 1 \cdot x^2) = (0 - 3, 2 \cdot 0 + 0 - 2) = (-3, -2).
$$

Thus, the matrix representation of T with respect to bases B and C is:

$$
[T]_C^B = \begin{bmatrix} 1 & 0 & -3 \\ 2 & 1 & -2 \end{bmatrix}.
$$

(b) For the basis $B = \{1, 1 + x, 1 + x + x^2\}$ and $C = \{(1, -1), (2, 1)\}$, we need to express the transformed vectors in terms of the basis C.

We start by applying T to each element of the basis B :

$$
T(1) = (1 - 0, 2 + 0 - 0),
$$

\n
$$
T(1 + x) = (1 - 0, 2 + 1 - 0),
$$

\n
$$
T(1 + x + x2) = (1 - 3, 2 + 1 - 2).
$$

Now we must express each result as a linear combination of vectors in C.

Let $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ be the coordinates of $T(1), T(1+x), T(1+x+x^2)$ in the basis C, respectively. We solve the following system of equations for each transformed vector:

$$
x_1 \cdot (1, -1) + y_1 \cdot (2, 1) = (1, 2) \Rightarrow x_1 = -1, y_1 = 1
$$

\n
$$
x_2 \cdot (1, -1) + y_2 \cdot (2, 1) = (1, 3) \Rightarrow x_2 = -\frac{5}{3}, y_2 = \frac{4}{3}
$$

\n
$$
x_3 \cdot (1, -1) + y_3 \cdot (2, 1) = (-2, 1) \Rightarrow x_3 = -\frac{4}{3}, y_3 = -\frac{1}{3}
$$

Thus, the matrix representation of T with respect to bases B and C is:

$$
[T]_C^B = \begin{bmatrix} 1 & -\frac{5}{3} & -\frac{4}{3} \\ 1 & \frac{4}{3} & -\frac{1}{3} \end{bmatrix}.
$$