Linear Algebra & Differential Equations

Elif Uskuplu

If you see any mistake, please email me (euskuplu@usc.edu).

10 Week 10

10.1 Kernel and Range

We begin with the definitions.

Definition 10.1. Let $T : V \to W$ be a linear transformation. The set of vectors of V that is mapped to the zero vector of W by T is called **kernel** of T, denoted as

$$Ker(T) = \{ \mathbf{v} \in V | T(\mathbf{v}) = \mathbf{0}_W \}.$$

The *range* of the linear transformation T is the subset of W consisting of all transformed vectors from V. We denote the range of T as

$$Ran(T) = \{T(\mathbf{v}) | \mathbf{v} \in V\}.$$

Examples.

1. We consider the linear transformation $T: P_2(\mathbb{R}) \to \mathbb{R}^2$ defined by

 $T(ax^2 + bx + c) = (2a, 3b).$

For the given T, we find the kernel by solving

$$T(ax^2 + bx + c) = (0, 0),$$

which gives

$$(2a, 3b) = (0, 0).$$

This implies a = 0 and b = 0, with no restrictions on c. Hence, the kernel of T is composed of all polynomials of the form $0x^2 + 0x + c$, where c is any real number. Therefore,

$$\operatorname{Ker}(T) = \{ c : c \in \mathbb{R} \}.$$

For $T(ax^2 + bx + c) = (2a, 3b)$, the range includes all ordered pairs in \mathbb{R}^2 of the form (2a, 3b), where *a* and *b* are any real numbers. Since any vector in \mathbb{R}^2 can be written like this, we have

$$\operatorname{Ran}(T) = \mathbb{R}^2.$$

2. Consider the linear transformation $S: M_2(\mathbb{R}) \to \mathbb{R}^4$ defined by the mapping

$$S\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = (a+b, c+d, 0, 0).$$

To ascertain the kernel of S, we resolve the equation

$$S\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = (0, 0, 0, 0),$$

yielding

$$(a + b, c + d, 0, 0) = (0, 0, 0, 0).$$

This necessitates a + b = 0 and c + d = 0, without imposing any further constraints upon a, b, c, and d. Consequently, the kernel of S is constituted by all 2×2 matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ satisfying a = -b and c = -d.

$$\operatorname{Ker}(S) = \left\{ \begin{bmatrix} a & -a \\ c & -c \end{bmatrix} : a, c \in \mathbb{R} \right\}.$$

Given the definition of *S*, it is evident that the range includes all vectors in \mathbb{R}^4 of the form (a + b, c + d, 0, 0), where *a*, *b*, *c*, and *d* are arbitrary real numbers. Thus,

$$Ran(S) = \{(x, y, 0, 0) : x, y \in \mathbb{R}\}.$$

3. We examine the linear transformation $U : \mathbb{R}^2 \to \mathbb{R}^3$ defined by

$$U(a,b) = (a,b,a+b).$$

To find the kernel of U, we set

$$U(a,b) = (0,0,0),$$

which leads to the system of equations

$$a = 0,$$

$$b = 0,$$

$$a + b = 0.$$

The solution to this system is a = 0 and b = 0, indicating that the kernel consists only of the zero vector in \mathbb{R}^2 . Thus,

$$\operatorname{Ker}(U) = \{(0,0)\}.$$

Given the definition of U, it is apparent that the range includes all vectors in \mathbb{R}^3 of the form (a, b, a + b), where a and b are real numbers. Therefore, the range is the entire \mathbb{R}^3 , as every vector (x, y, z) in \mathbb{R}^3 can be written in the form (a, b, a + b) for some $a, b \in \mathbb{R}$ with x = a, y = b, and z = a + b. Hence,

$$\operatorname{Ran}(U) = \{(x, y, z) \in \mathbb{R}^3 : z = x + y\} = \operatorname{span}\{(1, 0, 1), (0, 1, 1)\}.$$

The following result is easy but important.

Theorem 10.1. Let $T; V \to W$ be a linear transformation. Then Ker(T) is a subspace of V, and Ran(T) is a subspace of W.

Proof. Exercise.

Remark. Now, consider a linear transformation T from \mathbb{R}^n to \mathbb{R}^m . Recall that it means that there is an $m \times n$ matrix A such that $T(\mathbf{x}) = A\mathbf{x}$. Therefore, we can make following observations:

Ker(T) = nullspace(A). The kernel of *T*, denoted *Ker*(*T*), is the set of all vectors x ∈ ℝⁿ for which *T*(x) = 0 in ℝ^m, where 0 is the zero vector. By the definition of *T*, we have:

$$T(\mathbf{x}) = A\mathbf{x} = \mathbf{0}.$$

This equation signifies that x is in the null space of *A*, which is the set of all vectors that, when multiplied by *A*, yield the zero vector. Hence,

$$Ker(T) = {\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}} = nullspace(A).$$

• $\operatorname{Ran}(\mathbf{T}) = \operatorname{colspace}(\mathbf{A})$. The range of *T*, denoted $\operatorname{Ran}(T)$, consists of all vectors in \mathbb{R}^m that can be expressed as $T(\mathbf{x})$ for some $\mathbf{x} \in \mathbb{R}^n$. Given $T(\mathbf{x}) = A\mathbf{x}$, every vector in the range of *T* is a linear combination of the columns of *A*, since the multiplication of *A* by \mathbf{x} produces such a linear combination. Therefore, the range of *T* corresponds to the set of all possible linear combinations of the columns of *A*, which is precisely the column space of *A*. Thus,

$$Ran(T) = \{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^n\} = colspace(A).$$

Examples.

1. Consider the linear transformation $T_1 : \mathbb{R}^2 \to \mathbb{R}^2$ defined by the matrix

$$A_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

For any vector $\mathbf{x} = (x, y)$ in \mathbb{R}^2 , we have

$$T_1(\mathbf{x}) = A_1 \mathbf{x} = \begin{pmatrix} x \\ 0 \end{pmatrix}.$$

Kernel of T_1 : The kernel of T_1 , $Ker(T_1)$ in this case is

$$Ker(T_1) = \{(x, y) \in \mathbb{R}^2 : x = 0\} = \{(0, y) : y \in \mathbb{R}\},\$$

corresponding to the null space of A_1 .

Range of T_1 : The range of T_1 , $Ran(T_1)$, includes all vectors in the form of (x, 0), which forms the *x*-axis in \mathbb{R}^2 , and corresponds to the column space of A_1 .

2. Consider the linear transformation $T_2 : \mathbb{R}^3 \to \mathbb{R}^2$ defined by the matrix

$$A_2 = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}.$$

The RREF of A_2 is

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}.$$

This indicates that the first two columns of A_2 are linearly independent and span the column space of A_2 , which constitutes the range of T_2 .

Therefore, the range (column space) of T_2 is spanned by the vectors

$$\begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
 and $\begin{pmatrix} 2 \\ 5 \end{pmatrix}$,

and can be expressed as

$$Ran(T_2) =$$
Span $\{(1, 4), (2, 5)\}$.

To find the kernel of T_2 , we solve the system $A_2 \mathbf{x} = \mathbf{0}$, which leads to the following relations:

$$\begin{aligned} x &= z, \\ y &= -2z. \end{aligned}$$

Thus, the kernel of T_2 is spanned by the vector (1, -2, 1), indicating that

$$Ker(T_2) = \{\lambda(1, -2, 1) : \lambda \in \mathbb{R}\}.$$

3. Consider the matrix

$$A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 4 \\ 3 & 1 & 7 \end{pmatrix}$$

and the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $T(\mathbf{x}) = A\mathbf{x}$. The RREF of *A* is

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}.$$

The kernel of *T* is given by the solution set to $A\mathbf{x} = \mathbf{0}$, leading to the relations x = -3z and y = 2z. Therefore, the kernel of *T* can be expressed as

$$Ker(T) = \{ z(-3, 2, 1) : z \in \mathbb{R} \}.$$

This indicates that the kernel is spanned by the vector (-3, 2, 1), and is a one-dimensional subspace of \mathbb{R}^3 .

The reduced row echelon form (RREF) of A reveals that the first two columns of A are linearly independent. Thus, the range of T, or the column space of A, is spanned by the vectors

$$\begin{pmatrix} 1\\2\\3 \end{pmatrix}$$
 and $\begin{pmatrix} 0\\1\\1 \end{pmatrix}$.

Therefore, we can express the range as

$$Ran(T) =$$
Span { $(1, 2, 3), (0, 1, 1)$ },

which constitutes a two-dimensional subspace of \mathbb{R}^3 .

10.2 General Rank-Nullity Theorem

When *T* is a linear transformation from \mathbb{R}^n to \mathbb{R}^m with $m \times n$ matrix *A*, the ranknullity theorem says that rank(A) + nullity(A) = n. We want to generalize the idea for arbitrary linear transformations. For general $T : V \to W$, suppose that dim[V] = n and that dim[Ker(T)] = k. Then *k*-dimensions worth of the vectors in *V* are all mapped onto the zero vector in *W*. Consequently, we only have n - k dimensions worth of vectors left to map onto the remaining vectors in *W*. This idea gives the following theorem.

Theorem 10.2. If $T: V \to W$ is a linear transformation and V is finite-dimensional, then

$$\dim[Ker(T)] + \dim[Ran(T)] = \dim[V].$$

Proof. Omitted.

Example. Consider the linear transformation $T : P_3(\mathbb{R}) \to \mathbb{R}^3$ defined by

$$T(ax^{3} + bx^{2} + cx + d) = (a + b, b + c, c + d).$$

The kernel of *T*, denoted as Ker(T), consists of all polynomials $p(x) = ax^3 + bx^2 + cx + d$ such that T(p(x)) = (0, 0, 0). Setting the output of *T* equal to the zero vector gives us the system of equations

$$a + b = 0,$$

$$b + c = 0,$$

$$c + d = 0.$$

The system gives that $Ker(T) = \{-dx^3 + dx^2 - dx + d | d \in \mathbb{R}\} = span\{-x^3 + x^2 - x + 1\}.$

Since $\dim(Ker(T)) = 1$ and $\dim(P_3(\mathbb{R})) = 4$, by the general rank-nullity theorem, we have $\dim(Ran(T)) = 3$. Since the only subspace of \mathbb{R}^3 with 3 dimension is \mathbb{R}^3 , we get $Ran(T) = \mathbb{R}^3$.

Example. Given a linear transformation $T : V \to W$ with dim[V] = n and Ker $(T) = \{0\}$. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis for V. We want to show that $\{T(v_1), T(v_2), \ldots, T(v_n)\}$ is a basis for Ran(T).

We will prove the set is linearly independent. By the general rank-nullity theorem, we know dim[Ran(T)] = n, so we can conclude this linearly independent set is a basis for Ran(T).

Suppose there exist scalars c_1, c_2, \ldots, c_n such that

$$c_1T(v_1) + c_2T(v_2) + \dots + c_nT(v_n) = 0.$$

Since *T* is linear, we have

$$T(c_1v_1 + c_2v_2 + \dots + c_nv_n) = 0.$$

Because $\text{Ker}(T) = \{0\}$, it implies

$$c_1 v_1 + c_2 v_2 + \dots + c_n v_n = 0.$$

Since $\{v_1, v_2, \ldots, v_n\}$ are linearly independent, it follows that $c_1 = c_2 = \cdots = c_n = 0$. Hence, $\{T(v_1), T(v_2), \ldots, T(v_n)\}$ is linearly independent.

!!! In this example, if $\text{Ker}(T) \neq \{0\}$, there exists a non-zero vector $v \in V$ such that T(v) = 0. If v is part of a basis for V, then T(v) would be part of the corresponding set in Ran(T), but T(v) = 0 cannot be part of a basis since it does not contribute to the spanning of Ran(T) and disrupts linear independence. Thus, if Ker(T) contains non-zero vectors, the image under T of a basis for V will not necessarily form a basis for Ran(T).

10.3 Properties of Linear Transformations

The primary goal of this section is to prove that any real vector space of finite dimension n is intrinsically isomorphic to \mathbb{R}^n . This necessitates an exploration of the composition of linear transformations.

Definition 10.2. Let $T_1 : U \to V$ and $T_2 : V \to W$ be two linear transformations. We define the *composition, or product,* $T_2T_1 : U \to W$ by

$$(T_2T_1)(u) = T_2(T_1(u))$$
 for all $u \in U$.

Theorem 10.3. If $T_1 : U \to V$ and $T_2 : V \to W$ are two linear transformations, then $T_2T_1 : U \to W$ is also a linear transformation.

Proof. Exercise.

Examples.

1. Let $T_1 : \mathbb{R}^n \to \mathbb{R}^m$ and $T_2 : \mathbb{R}^m \to \mathbb{R}^p$ be linear transformations with matrices *A* and *B*, respectively.

From the definition, for any vector **x** in \mathbb{R}^n , we have

$$(T_2T_1)(\mathbf{x}) = T_2(T_1(\mathbf{x})) = T_2(A\mathbf{x}) = B(A\mathbf{x}) = (BA)\mathbf{x}.$$

Consequently, T_2T_1 is the linear transformation with matrix *BA*. Note that *A* is an $m \times n$ matrix and *B* is a $p \times m$ matrix, so that the matrix product *BA* is defined, with size $p \times n$.

2. Let $T_1 : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ and $T_2 : M_n(\mathbb{R}) \to \mathbb{R}$ be the linear transformations defined by

$$T_1(A) = A + A^T, \quad T_2(A) = \operatorname{tr}(A).$$

In this case, $T_2T_1: M_n(\mathbb{R}) \to \mathbb{R}$ is defined by

$$(T_2T_1)(A) = T_2(T_1(A)) = T_2(A + A^T) = \operatorname{tr}(A + A^T).$$

This can be written in the equivalent form

$$(T_2T_1)(A) = 2\mathsf{tr}(A).$$

3. Let $T_1 : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ and $T_2 : M_n(\mathbb{R}) \to M_n(\mathbb{R})$ be the linear transformations defined by

$$T_1(A) = A - A^T$$

and

$$T_2(A) = A + A^T.$$

We want to show that T_2T_1 is the zero transformation. We compute $T_2(T_1(A))$:

$$T_{2}(T_{1}(A)) = T_{2}(A - A^{T})$$

= $(A - A^{T}) + (A - A^{T})^{T}$
= $(A - A^{T}) + (A^{T} - (A^{T})^{T})$
= $A - A^{T} + A^{T} - A$
= 0.

The following definitions are very common for any algebraic structures. We focus on linear transformations.

Definition 10.3. *A linear transformation* $T : V \rightarrow W$ *is said to be*

- 1. one-to-one if distinct elements in V are mapped via T to distinct elements in W; that is, whenever $v_1 \neq v_2$ in V, we have $T(v_1) \neq T(v_2)$, or equivalently, whenever $T(v_1) = T(v_2)$, we have $v_1 = v_2$.
- 2. onto if the range of T is the whole of W; that is, if every $w \in W$ is the image under T of at least one vector $v \in V$.
- 3. *invertible* if T is both one-to-one and onto. Then the linear transformation $T^{-1}: W \to V$ defined by

 $T^{-1}(w) = v$ if and only if w = T(v)

is called the *inverse transformation* to T.

Let V and W be vector spaces. If there exists a linear transformation $T : V \to W$ that is invertible, we call T an **isomorphism**, and we say that V and W are **isomorphic vector spaces**, written $V \cong W$.

Theorem 10.4. Let $T : V \to W$ be a linear transformation. Then T is one-to-one if and only if $Ker(T) = \{0\}$.

Proof. Since *T* is a linear transformation, we have $T(\mathbf{0}) = \mathbf{0}$. Thus, if *T* is one-to-one, there can be no other vector *v* in *V* satisfying $T(v) = \mathbf{0}$, and so, $\text{Ker}(T) = \{\mathbf{0}\}$. Conversely, suppose that $\text{Ker}(T) = \{\mathbf{0}\}$. If $v_1 \neq v_2$, then $v_1 - v_2 \neq \mathbf{0}$, and therefore since $\text{Ker}(T) = \{\mathbf{0}\}$, $T(v_1 - v_2) \neq \mathbf{0}$. Hence, by the linearity of *T*, $T(v_1) - T(v_2) \neq \mathbf{0}$, or equivalently, $T(v_1) \neq T(v_2)$. Thus, if $\text{Ker}(T) = \{\mathbf{0}\}$, then *T* is one-to-one. \Box

Remark. In summary, we have the following rules :

 $T: V \to W$ is one-to-one $\Leftrightarrow Ker(T) = \{\mathbf{0}\}$ $T: V \to W$ is onto $\Leftrightarrow Ran(T) = W$

The following theorem gives the relationship between one-to-one and/or linear transformation from *V* to *W* and the dimensions of *V* and *W*.

Theorem 10.5. Let $T : V \to W$ be a linear transformation, and assume that V and W are both *finite-dimensional*. Then

- 1. If T is one-to-one, then $\dim[V] \leq \dim[W]$.
- 2. If T is onto, then $dim[V] \ge dim[W]$.
- 3. If T is one-to-one and onto, then dim[V] = dim[W].

Proof. Exercise. Use the general rank-nullity theorem.

The last result for this section combines all previous results and provides new characterizations for invertible matrices.

Theorem 10.6. Let A be an $n \times n$ matrix with real elements, and let $T : \mathbb{R}^n \to \mathbb{R}^n$ be the matrix transformation defined by $T(\mathbf{x}) = A\mathbf{x}$. The following conditions are equivalent:

- 1) A is invertible.
- 17) T is one-to-one.
- 18) T is onto.
- 19) *T* is an isomorphism.

Proof. By the Invertible Matrix Theorem, A is invertible if and only if nullspace $(A) = \{0\}$. This is equivalent to the statement that Ker $(T) = \{0\}$, and that this is equivalent to the statement that T is one-to-one.

Hence, (1) and (17) are equivalent. Now (17) and (18) are equivalent by the general rank-nullity theorem, and (17) and (18) together are equivalent to (19) by the definition of an isomorphism. \Box

Examples.

1.
$$T(\mathbf{x}) = A\mathbf{x}$$
, where $A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, find Ker(T) and Ran(T), and hence, determine whether

the given transformation is one-to-one, onto, both, or neither. If T^{-1} exists, find it.

- Solution. We already know $Ran(T) = colspace(A) = span\{(1, 2, 3)\}$. Since this is one dimensional vector space, it cannot be \mathbb{R}^3 , namely, $Ran(T) \neq \mathbb{R}^3$, so *T* is not onto. By general rank-nullity theorem dim(Ker(T)) = 0 which means $Ker(T) = \{0\}$, so *T* is one-to-one. Since *T* is not onto, it cannot be invertible.
 - 2. $T(\mathbf{x}) = A\mathbf{x}$, where $A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$, find Ker(*T*) and Ran(*T*), and hence, determine whether the given transformation is one-to-one, onto, both, or neither. If T^{-1} exists, find it.
- Solution. Since $det(A) = 10 \neq 0$, the matrix A is invertible. Therefore, $Ker(T) = nullspace(A) = \{0\}$ and hence $Ran(T) = colspace(A) = \mathbb{R}^2$. It means that T is both one-to-one and onto, and so T is invertible. Its inverse given by the matrix transformation $A^{-1}\mathbf{x} = \begin{bmatrix} \frac{3}{10} & -\frac{2}{10} \\ -\frac{1}{10} & \frac{4}{10} \end{bmatrix} \mathbf{x}.$

3. $T(\mathbf{x}) = A\mathbf{x}$, where $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 5 & 1 \end{bmatrix}$, find Ker(*T*) and Ran(*T*), and hence, determine whether the given transformation is one-to-one, onto, both, or neither. If T^{-1} exists, find it.

Solution. The RREF form of *A* is $\begin{bmatrix} 1 & 0 & -7 \\ 0 & 1 & 3 \end{bmatrix}$. Then $Ran(T) = colspace(A) = \{(1, 2), (2, 5)\}$, and since this has dimension 2, we get $Ran(T) = \mathbb{R}^2$. Thus, *T* is onto. On the other hand, $Ker(T) = nullspace(A) = \{(7z, -3z, z) | z \in \mathbb{R}\} \neq \{\mathbf{0}\}$, so *T* is not one-to-one. Therefore, *T* is not invertible.

4. Define $T : P_1(\mathbb{R}) \to P_1(\mathbb{R})$ by

$$T(ax + b) = (2b - a)x + (b + a).$$

Show that *T* is both one-to-one and onto, and find T^{-1} .

Solution. We have

$$Ker(T) = \{ax + b \mid (2b - a)x + (b + a) = 0\} = \{ax + b \mid (2b - a) = 0 \text{ and } (b + a) = 0\}.$$

It is easy to see that such *a* and *b* must be zero, so $Ker(T) = \{0\}$. By general ranknullity theorem, dim(Ran(T)) = 2. Since $dim(P_1(\mathbb{R})) = 2$, we get $Ran(T) = P_1(\mathbb{R})$. Since *T* is both one-to-one and onto, it is invertible. The inverse T^{-1} is computed as follows: we know if T(ax + b) = cx + d, then $T^{-1}(cx + d) = ax + b$. Form the first equation, we have

$$cx + d = (2b - a)x + (b + a).$$

Therefore, c = 2b - a and d = b + a. After solving these, we observe that $b = \frac{c+d}{3}$ and $a = \frac{2d-c}{3}$, i.e.

$$T^{-1}(cx+d) = (\frac{2d-c}{3})x + \frac{c+d}{3}.$$

5. Let *V* denote the vector space of 2×2 symmetric matrices and define $T : V \to P_2(\mathbb{R})$ by

$$T\left(\begin{bmatrix}a & b\\ b & c\end{bmatrix}\right) = ax^2 + bx + c.$$

Determine whether *T* is one-to-one, onto, both, or neither. Find T^{-1} or explain why it does not exist.

Solution. It is obvious that $Ker(T) = \{0\}$, so dim(Ker(T)) = 0. Since dim(V) = 3, by general rank nullity theorem, we get dim(Ran(T) = 3 which gives $Ran(T) = P_2(\mathbb{R})$. Since T is both one-to-one and onto, T is invertible. The inverse T^{-1} is given by:

$$T^{-1}(ax^2 + bx + c) = \begin{bmatrix} a & b \\ b & c \end{bmatrix}.$$

Example. Let $T_1 : V_1 \to V_2$ and $T_2 : V_2 \to V_3$ be linear transformations.

(a) Prove that if T_1 and T_2 are both one-to-one, then so is $T_2T_1 : V_1 \to V_3$.

Proof. Assume T_1 and T_2 are both one-to-one. Suppose $T_2T_1(v_1) = T_2T_1(v_2)$. Since T_2 is one-to-one, this implies that $T_1(v_1) = T_1(v_2)$. And since T_1 is also one-to-one, we have $v_1 = v_2$, thus T_2T_1 is one-to-one.

(b) Prove that if T_1 and T_2 are both onto, then so is $T_2T_1 : V_1 \to V_3$.

Proof. Assume T_1 and T_2 are both onto. Let $w \in V_3$. Since T_2 is onto, there exists a $v_2 \in V_2$ such that $T_2(v_2) = w$. Since T_1 is onto, there exists a $v_1 \in V_1$ such that $T_1(v_1) = v_2$. Therefore, $T_2T_1(v_1) = w$, thus T_2T_1 is onto.

(c) Prove that if T_1 and T_2 are both isomorphisms, then so is $T_2T_1: V_1 \to V_3$.

Proof. From parts (a) and (b), if T_1 and T_2 are both one-to-one and onto, then T_2T_1 is both one-to-one and onto, which are the necessary and sufficient conditions for a transformation to be an isomorphism.

Example. Let $T_1: V_1 \to V_2$ and $T_2: V_2 \to V_3$ be linear transformations.

(a) Prove that if $T_2T_1: V_1 \to V_3$ is one-to-one, then so is T_1 .

Proof. Exercise.

(b) Prove that if $T_2T_1: V_1 \rightarrow V_3$ is onto, then so is T_2 .

Proof. Exercise.

We finalize this section with our primary goal:

Theorem 10.7. If two vector spaces V and W have the same finite dimension, then they are isomorphic.

Proof. Let *V* and *W* be vector spaces over the same field, and suppose that $\dim(V) = \dim(W) = n$. Let $\{v_1, v_2, \ldots, v_n\}$ be a basis for *V* and $\{w_1, w_2, \ldots, w_n\}$ be a basis for *W*.

Define a linear transformation $T : V \to W$ by mapping the basis vectors of V to the basis vectors of W as follows:

$$T(v_i) = w_i$$
 for all $i = 1, 2, ..., n$.

Since the basis vectors v_i span V, any vector $v \in V$ can be uniquely expressed as a linear combination of the basis vectors:

$$v = a_1v_1 + a_2v_2 + \dots + a_nv_n$$

where a_1, a_2, \ldots, a_n are scalars in the field over which the vector spaces are defined.

The transformation T then maps v to a unique vector in W as follows:

$$T(v) = a_1 T(v_1) + a_2 T(v_2) + \dots + a_n T(v_n) = a_1 w_1 + a_2 w_2 + \dots + a_n w_n.$$

This map is linear by construction, one-to-one because different vectors in V have different coefficients in the linear combination of basis vectors (and thus map to different vectors in W), and onto because every vector in W can be reached by the image of some vector in V (since the w_i 's form a basis for W).

Therefore, *T* is an isomorphism, and *V* and *W* are isomorphic vector spaces. \Box

Corollary 10.1. If V is a vector space of dimension n, then V is isomorphic to \mathbb{R}^n .

Proof. Take $W = \mathbb{R}^n$ in the previous theorem.

10.4 The Matrix of a Linear Transformation

In earlier discussions, we established that any linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ corresponds to an $m \times n$ matrix. We now aim to extend this association to arbitrary vector spaces. Let V and W be vector spaces of dimensions n and m, respectively. By selecting ordered bases B for V and C for W, every linear transformation $T : V \to W$ can be uniquely represented by an $m \times n$ matrix. This matrix encapsulates all vital properties of T, encapsulating the essence of linear transformations between finite-dimensional vector spaces within matrix algebra.

Definition 10.4. Let V and W be vector spaces with ordered bases $B = \{v_1, v_2, ..., v_n\}$ and $C = \{w_1, w_2, ..., w_m\}$, respectively, and let $T : V \to W$ be a linear transformation. The $m \times n$ matrix

$$[T]_C^B = ([T(v_1)]_C, [T(v_2)]_C, \dots, [T(v_n)]_C)$$

is called the matrix representation of T relative to the bases B and C. In case V = W and B = C, we refer to $[T]_B^B$ simply as the matrix representation of T relative to the basis B.

Example. Let $T : P_2(\mathbb{R}) \to \mathbb{R}^2$ be defined by the transformation

$$T(a + bx + cx^{2}) = (a - 3c, 2a + b - 2c).$$

We want to find the matrix representation of T with respect to the bases:

- (a) $B = \{1, x, x^2\}; C = \{(1, 0), (0, 1)\}.$
- (b) $B = \{1, 1 + x, 1 + x + x^2\}; C = \{(1, -1), (2, 1)\}.$
- (a) For the basis $B = \{1, x, x^2\}$ and $C = \{(1, 0), (0, 1)\}$, we find the matrix representation of *T* by applying *T* to each element of the basis *B*.

Applying *T* to 1, *x*, and x^2 respectively, we get:

$$T(1) = T(1 + 0 \cdot x + 0 \cdot x^2) = (1 - 0, 2 \cdot 1 + 0 - 0) = (1, 2),$$

$$T(x) = T(0 + 1 \cdot x + 0 \cdot x^2) = (0 - 0, 2 \cdot 0 + 1 - 0) = (0, 1),$$

$$T(x^2) = T(0 + 0 \cdot x + 1 \cdot x^2) = (0 - 3, 2 \cdot 0 + 0 - 2) = (-3, -2).$$

Thus, the matrix representation of T with respect to bases B and C is:

$$[T]_C^B = \begin{bmatrix} 1 & 0 & -3 \\ 2 & 1 & -2 \end{bmatrix}.$$

(b) For the basis $B = \{1, 1 + x, 1 + x + x^2\}$ and $C = \{(1, -1), (2, 1)\}$, we need to express the transformed vectors in terms of the basis *C*.

We start by applying *T* to each element of the basis *B*:

$$T(1) = (1 - 0, 2 + 0 - 0),$$

$$T(1 + x) = (1 - 0, 2 + 1 - 0),$$

$$T(1 + x + x^{2}) = (1 - 3, 2 + 1 - 2).$$

Now we must express each result as a linear combination of vectors in C.

Let $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ be the coordinates of $T(1), T(1+x), T(1+x+x^2)$ in the basis C, respectively. We solve the following system of equations for each transformed vector:

$$\begin{aligned} x_1 \cdot (1, -1) + y_1 \cdot (2, 1) &= (1, 2) \\ x_2 \cdot (1, -1) + y_2 \cdot (2, 1) &= (1, 3) \\ x_3 \cdot (1, -1) + y_3 \cdot (2, 1) &= (-2, 1) \end{aligned} \Rightarrow \begin{aligned} x_1 &= -1, \ y_1 &= 1 \\ \Rightarrow x_2 &= -\frac{5}{3}, \ y_2 &= \frac{4}{3} \\ \Rightarrow x_3 &= -\frac{4}{3}, \ y_3 &= -\frac{1}{3} \end{aligned}$$

Thus, the matrix representation of T with respect to bases B and C is:

$$[T]_C^B = \begin{bmatrix} 1 & -\frac{5}{3} & -\frac{4}{3} \\ 1 & \frac{4}{3} & -\frac{1}{3} \end{bmatrix}.$$