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11 Week 11

For the motivation of our new problem, let’s consider a basic differential equation

F ′(x) = aF (x)

It has a solution
F (x) = ceax

When we generalize this to F
′
1(x)
...

F ′
n(x)

 = A

F1(x)
...

Fn(x)


where A is an n× n matrix.

If we can make the equation like before, namelyF
′
1(x)
...

F ′
n(x)

 = λ

F1(x)
...

Fn(x)


where λ is a scalar, we have a similar solutionF1(x)

...
Fn(x)

 =

c1e
λx

...
cne

λx


So we want to make Ax⃗ as the same as λx⃗.

Also, whenever we try to solve Ax⃗ = b⃗, the simpler A is the easier the solution is. So,
if we make A "simpler" to a diagonal matrix, it would make the elimination easier.

The next sections will give necessary tools for these.

11.1 Eigenvalue & Eigenvector problem

Definition 11.1. Let A be an n× n matrix. Any values of λ for which

Av⃗ = λv⃗
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has nontrivial solutions v⃗ are called eigenvalues of A. The corresponding nonzero vectors v⃗ are
called eigenvectors of A.

Example. A =

[
1 3
2 2

]
. Then A

[
1
1

]
=

[
4
4

]
= 4

[
1
1

]
. So λ = 4 is an eigenvalue of A, and[

1
1

]
is an eigenvector of A corresponding to 4.

However, A
[
1
−1

]
̸= λ

[
1
−1

]
for any λ. So

[
1
−1

]
is not an eigenvector of A.

Also, A
[
3
−2

]
=

[
−3
2

]
= −1

[
3
−2

]
. So λ = −1 is an eigenvalue of A, and

[
3
−2

]
is an

eigenvector of A corresponding to −1.

How to solve eigenvalue/eigenvector problem?
First, we want that Av⃗ = λv⃗ has a nontrivial solution. On the other hand, we have

Av⃗ = λv⃗ ⇔ Av⃗ = λIv⃗ ⇔ (A− λI)v⃗ = 0⃗

The last one is a usual homogeneous system, and it has a nontrivial solution if and only
if det(A− λI) = 0. Therefore, to solve the problem,

1) Solve det(A− λI) = 0

2) If λ1, λk are solutions, then solve

(A− λiI)v⃗ = 0⃗

Definition 11.2. For a given n× n matrix A, the polynomial

p(λ) = det(A− λI)

is called the characteristic polynomial of A, and the equation

p(λ) = 0

is called the characteristic equation of A.

Examples.

1. To find the eigenvalues and eigenvectors of the matrix

A =

[
7 1
6 2

]
,

we proceed as follows:

1) Solve the characteristic equation det(A− λI) = 0:
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The characteristic equation for matrix A is:

λ2 − 9λ+ 8 = 0.

Solving this quadratic equation gives us the eigenvalues:

λ1 = 1,

λ2 = 8.

2) Solve (A− λiI)v⃗ = 0⃗ for each λi:

For λ1 = 1, the eigenvector v⃗1 is found by solving the system:

(A− λ1I) v⃗ = 0⃗

which simplifies to: [
6 1
6 1

]
v⃗1 = 0⃗.

The solution to this system gives the eigenvector:

v⃗1 =

[
x

−6x

]
.

For λ2 = 8, the eigenvector v⃗2 is found by solving the system:

(A− λ2I) v⃗ = 0⃗

which simplifies to: [
−1 1
6 −6

]
v⃗2 = 0⃗.

The solution to this system gives the eigenvector:

v⃗2 =

[
x
x

]
.

Thus, we have found the eigenvalues and eigenvectors for the matrix A.

2. To find the eigenvalues and eigenvectors of the matrix

A =

[
7 9
−1 3

]
,

we proceed as follows:

1) Solve the characteristic equation det(A− λI) = 0:

The characteristic equation is obtained by calculating the determinant of A − λI ,
which leads to:

λ2 − 10λ+ 30 = 0.
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Solving this quadratic equation gives us the eigenvalues:

λ1 = 5−
√
5i,

λ2 = 5 +
√
5i.

2) Solve (A− λiI)v⃗ = 0⃗ for each λi:

For λ1 = 5−
√
5i, we find the eigenvector v⃗1 by solving the system:

(A− λ1I) v⃗ = 0⃗

which simplifies to: [
2 +

√
5i 9

−1 −2 +
√
5i

]
v⃗1 = 0⃗.

The solution to this system gives the eigenvector:

v⃗1 =

[
(−2 +

√
5i)y

y

]
.

For λ2 = 5 +
√
5i, we solve the system:

(A− λ2I) v⃗ = 0⃗

which simplifies to: [
2−

√
5i 9

−1 −2−
√
5i

]
v⃗2 = 0⃗.

The solution to this system gives the eigenvector:

v⃗2 =

[
(−2−

√
5i)y

y

]
.

Thus, we have found the eigenvalues and eigenvectors for the matrix A.

3. To find the eigenvalues and eigenvectors of the matrix

A =

10 −12 8
0 2 0
−8 12 −6

 ,

we follow these steps:

1) Solve the characteristic equation det(A− λI) = 0:

The characteristic polynomial for matrix A is:

−λ3 + 6λ2 − 12λ+ 8 = −(λ− 2)3.
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Solving this cubic equation, we find the eigenvalue to be:

λ = 2.

2) Solve (A− λI)v⃗ = 0⃗ for λ = 2:

We set up the system:
(A− 2I) v⃗ = 0⃗,

which results in the following matrix equation after substituting λ = 2: 8 −12 8
0 0 0
−8 12 −8

 v⃗ = 0⃗.

Solving this system gives us the eigenvectors:

v⃗ =

3
2
y − z
y
z

 =

3
2

1
0

 y +

−1
0
1

 z

For any different y, z, we have a different eigenvectors. These eigenvectors corre-
spond to the eigenvalue λ = 2 for the matrix A.

11.2 Non-defective & Defective matrices

Let consider an n× n matrix

A =

a11 · · · a1n
... . . . ...

an1 · · · ann

 .

Its characteristic polynomial is

p(λ) = det(λI − A) = det

λ− a11 · · · −a1n
... . . . ...

−an1 · · · λ− ann

 ,

and this can be written as follows:

p(λ) = (−1)nλn + bn−1λ
n−1 + · · ·+ b1λ+ b0.

Fact 1. Fundamental Theorem of Algebra says that p(λ) = 0 has always a solution in C. In other
words, a matrix A can have complex eigenvalues. We can compute the complex
eigenvectors using the following theorem.
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Theorem 11.1. Let A be an n × n matrix with real elements. If λ is a complex eigenvalue
of A with corresponding eigenvector v, then λ̄ is also an eigenvalue of A with corresponding
eigenvector v̄.

Proof. If Av = λv then Āv̄ = λ̄v̄. Since A has real coefficients, we get Av̄ = λ̄v̄.

Fact 2. If λ1, . . . , λk are roots of p(λ), we can also write p(λ) as

p(λ) = (−1)n(λ− λ1)
m1 · · · (λ− λk)

mk

where m1 + · · ·+mk = n. The number mi is called the algebraic multiplicity of λi.

Fact 3. For a given eigenvalue λ of A ∈ Mn(C), let Eλ be the set of all vectors v satisfying

Av = λv.

Then Eλ is called the eigenspace of A corresponding to the eigenvalue λ. In other
words,

Eλ = nullspace(A− λIn).

Then dim(Eλ) is called the geometric multiplicity of λ. Note that we have Eλ is a
subspace of Cn as a complex vector space.

Fact 4. Eigenvectors corresponding to distinct eigenvalues are linearly independent.1

Now, there are some natural questions: what if there are less than n eigenvalues, or
the total number of linearly independent eigenvectors is less than n?

Definition 11.3. A n × n matrix A that has n linearly independent eigenvectors is called non-
defective, or A has less than n linearly independent eigenvectors, A is called defective.

Now, we have a new problem!!!

For given n× n matrix A, determine whether A is non-defective.

We have an effective solution method for such a problem.

1. Find the eigenvalues of A.

• If there are n distinct eigenvalues, then A is non-defective because they produce
n linearly independent eigenvectors.

• Suppose there are less than n distinct eigenvalues. Then we need to go the next
step.

2. Find the corresponding eigenvectors.

1The proof is written on the textbook.
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• If geometric multiplicity equals algebraic multiplicity for each eigenvalue, then
A is non-defective because m1+m2+ . . .+mn = n and we have n independent
eigenvectors.

• Otherwise, we can decide A is defective.

Example. Let A =

4 0 0
0 2 −3
0 −2 1

. We’ll determine whether A is non-defective. First

we need to solve the characteristic equation to find its eigenvalues.

det

4− λ 0 0
0 2− λ −3
0 −2 1− λ

 = (4− λ) [(2− λ)(1− λ)− 6]

= (4− λ)
[
λ2 − 3λ+ 2− 6

]
= (4− λ)(λ2 − 3λ− 4)

= (4− λ)(λ− 4)(λ+ 1) = −(4− λ)2(λ+ 1)

So we have two eigenvalues: λ1 = 4 with algebraic multiplicity 2 and λ2 = −1 with
algebraic multiplicity 1.

Maybe A is defective, we need further check.

If λ4 = 4, we need to solve the following system.0 0 0
0 −2 −3
0 −2 −3

xy
z

 = 0

It means x can be arbitrary and −2y − 3z = 0 ⇒ y = −3
2
z. So all eigenvectors are of the

form v = (x,−3
2
z, z). In other words,

E4 = span{(1, 0, 0), (0,−3

2
, 1)}.

This means that the geometric multiplicity is 2 for λ2.

If λ2 = −1, we need to solve the following system.5 0 0
0 3 −3
0 −2 2

xy
z

 = 0

It means x = 0, and y = z.So all eigenvectors are of the form v = (0, y, y). In other words,

E2 = span{(0, 1, 1)}.

This means that the geometric multiplicity is 1 for λ2.

7



As a result, we achieve that A is non-defective.

Examples. Let’s take the examples in the previous section. Read the discussions about
their eigenvalue/eigenvector solutions. Then we get

1. A =

[
7 1
6 2

]
is non-defective.

2. A =

[
7 9
−1 3

]
is non-defective.

3. A =

10 −12 8
0 2 0
−8 12 −6

 is defective.

11.3 Diagonalization

Definition 11.4. Let A and B be n × n matrices. We say A is similar to B if there exists an
invertible matrix S such that

S−1AS = B.

Example. A =

[
1 0
3 1

]
and B =

[
56 −95
33 −56

]
are similar because if S =

[
3 −5
−1 2

]
, then

we get
S−1AS = B.

Theorem 11.2. If A and B are similar, then they have the same eigenvalues.

Proof. On the textbook.

First of all, the converse is not true. For example, if A =

[
1 1
0 1

]
and B =

[
1 0
0 1

]
= I2,

then they have the same eigenvalue which is 1, but if there is an invertible S such that

S−1AS = B

then we get
A = SBS−1 = SS−1 = B

but A ̸= B. So the theorem is not biconditional. However, we can consider a special case.

Suppose A has eigenvalues λ1, . . . , λn (they are not necessarily distinct). Then A and

diag(λ1, . . . , λn) =


λ1 0 · · · 0
0 λ2 · · · 0
...

... . . . ...
0 0 · · · λn


have the same eigenvalues. We want to achieve a condition that makes A and diag(λ1, . . . , λn)
similar.
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Theorem 11.3. An n×n matrix A is similar to a diagonal matrix if and only if A is nondefective.
In this case, A is called diagonalizable.

In such case, S = [v1, . . . , vn] where {v1, . . . , vn} is the set of n linearly independent eigenvec-
tors and

S−1AS = diag(λ1, . . . , λn)

where λ1, . . . , λn are the eigenvalues of A (not necessarily distinct).

The proof indeed gives the necessary algorithm. Instead of giving the whole proof,
we will apply the same idea in the following example:

Example 1.

A =

1 0 0
0 3 −7
1 1 −3


Then the characteristic equation of A is

p(λ) = (λ− 1)(λ− 4)(λ+ 4).

Since A has three distinct eigenvalues, A is nondefective, so A is diagonalizable. We need
to find S to achieve similarity. The details are exercises but we have λ1 = 1, λ2 = 4, λ3 =
−4 and

E1 = span{(−15,−7, 2)},
E2 = span{(0, 7, 1)},
E3 = span{(0,−1, 1)}.

Now we have

A

−15
−7
2

 = 1

−15
−7
2

 ,

A

07
1

 = 4

07
1

 ,

A

 0
−1
1

 = −4

 0
−1
1

 .

In other words,A
−15
−7
2

 , A

07
1

 , A

 0
−1
1

 =

−15
−7
2

 , 4

07
1

 , −4

 0
−1
1

 ,

⇒ A

−15 0 0
−7 7 −1
2 1 1

 =

−15 0 0
−7 7 −1
2 1 1

1 0 0
0 4 0
0 0 −4

 .
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Let’s take S =

−15 0 0
−7 7 −1
2 1 1

. Since the columns are independent, S is invertible and we

get

AS = S

1 0 0
0 4 0
0 0 −4

 ,

and hence

S−1AS =

1 0 0
0 4 0
0 0 −4

 .

So A is diagonalizable. For the reverse direction in the theorem, we apply the proof
idea in the following example.

Example 2.

A =

−2 1 4
−2 1 4
−2 1 4

 , S =

1 1 1
1 2 0
1 0 1

 , B =

3 0 0
0 0 0
0 0 0


We have

S−1AS = B.

We can deduce A and B are similar, so they have the same eigenvalues, which are 3
and 0. Also, we have AS = SB namely they have equal columns. This means

AS1 = 3S1, AS2 = 0S2, AS3 = 0S3.

In other words, the eigenspace corresponded to 3 is span{S1}, and the eigenspace
corresponded to 0 is span{S2, S3}. This means A is nondefective.

To sum up, in order to determine whether A is diagonalizable or not, we should de-
termine whether A is nondefective or not. If A is nondefective,

1) A is similar to diag(λ1, . . . , λn) where λ1, . . . , λn are eigenvalues (not necessarily
distinct).

2) A is similar to diag(λ1, . . . , λn) by S where the columns of S are the independent
corresponded eigenvectors of A. When you take the columns, be careful about the order.
The columns should be eigenvectors for λ1, eigenvectors for λ2, ..., and eigenvectors for
λn.

Example.

A =

 1 −2 0
−2 1 0
0 0 3


It has characteristic polynomial p(λ) = (λ + 1)(λ− 3)2. Therefore, A has two eigenvalues
λ1 = −1, λ2 = 3.
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For λ1 = −1: 2 −2 0
−2 2 0
0 0 4

 v⃗ = 0⃗ ⇒ Then we have v⃗ = (x, x, 0) for x ∈ R.

This means E1 = span{(1, 1, 0)}.

For λ2 = 3:−2 −2 0
−2 −2 0
0 0 0

 v⃗ = 0⃗ ⇒ Then we have v⃗ = (x,−x, z) for x, z ∈ R.

This means E2 = span{(1,−1, 0), (0, 0, 1)}.

Since algebraic multiplicity = geometric multiplicity for each eigenvalue of A, A is

non-defective. Also, A is diagonalizable. Take S =

1 1 0
1 −1 0
0 0 1

 and then we get

S−1AS =

−1 0 0
0 3 0
0 0 3

 .
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