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12 Week 12

12.1 Ordinary Differential Equations

Definition 12.1. A differential equation that can be written in the form

an(x)y
(n) + an−1(x)y

(n−1) + · · ·+ a1(x)y
′ + a0(x)y = F (x)

where a0, a1, . . . , an are functions of x only, is called a linear differential equation of order n.

Remark. This is linear because our variables are y, y′, y′′, . . . , y(n) and they are linear
expressions. Note that y(n) is not the same as yn. The former represents the nth derivative
of y, the latter represents the nth power of y. Also we call such equations ordinary because
the unknown y depends only on a single variable x.

Examples.

1. y′′′ + cos(x)y′′ + exy′ + 5y = sinh(x) is a linear differential equation of order 3.

2. y′′ + (y′)2 + sin(x)y = x has order 2 but is nonlinear.

3. xy′ + 1
5+x

y = 0 is a linear differential equation of order 1.

Exercise: Determine whether the given equations are linear or nonlinear and deter-
mine their order.

1. y = y′

2. y′′′ − y = 5

3. y′y′′ = 1

4. x5y(4) − x3y′′ + 6y = 0

5. (1− x2)y′′ − 4xy′ + 5y = sinx

6. xy′′ − (y′)2 + y = 0
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Remark. For derivatives we also have the following notations:

y′ =
dy

dx
, y′′ =

d2y

dx2
, y′′′ =

d3y

dx3
, , . . . , y(n) =

dny

dxn

Definition 12.2. A function y = f(x) that is (at least) n times differentiable on an interval I is
called a solution to the differential equation

a0(x)y + a1(x)y
′ + · · ·+ an(x)y

(n) = f(x) (1)

if the substitution y = f(x), y′ = f ′(x), . . . , y(n) = f (n)(x) satisfies (1) for all x in I .

Examples.

1. The function y(x) = c1 cos(2x) + c2 sin(2x) is a solution for

y′′ + 4y = 0 on R.

First, we calculate the derivatives of y(x):

y′(x) = −2c1 sin(2x) + 2c2 cos(2x)

y′′(x) = −4c1 cos(2x)− 4c2 sin(2x)

So y′′ + 4y = −4c1 cos(2x)− 4c2 sin(2x) + 4(c1 cos(2x) + c2 sin(2x)) = 0.

2. The function y(x) = c1x
2 lnx is a solution for

x2y′′ − 3xy′ + 4y = 0 on (0,∞).

Again, we compute the derivatives of y(x):

y′(x) = 2c1x lnx+ c1x

y′′(x) = 2c1 lnx+ 2c1 + c1 = 2c1 lnx+ 3c1

Then, we substitute to verify the equation:

x2y′′ − 3xy′ + 4y = x2 (2c1 lnx+ 3c1)− 3x(2c1x lnx+ c1x) + 4c1x
2 lnx

= 6c1x
2 lnx+ 3c1x

2 − 6c1x
2 lnx− 3c1x

2

= 0,

which confirms that y(x) = c1x
2 lnx is a solution to the differential equation.

Exercise. Verify that the given function is a solution to a given differential equation
and state the maximum interval over which the solution is valid.

1. y(x) = c1e
2x + c2e

−2x, y′′ − 4y = 0

2. y(x) = 1
x+4

, y′ = −y2
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3. y(x) = eax(c1 + c2x), y′′ − 2ay′ + a2y = 0 where a is constant.

Remark. Nonlinear differential equations also have their solutions written in implicit
form, F (x, y) = 0, where F defines the solution y(x) implicitly as a function of x. E.g., The
relation x2 + y2 − 4 = 0 defines an implicit solution to the nonlinear differential equation
y′ = −x

y
. During the lecture, our focus is the linear differential equations.

Definition 12.3. A solution to an n-th order differential equation on an interval I is called the
general solution if it satisfies the following conditions:

1. The solution contains a constant c1, c2, . . . , cn.

2. All solutions to the equation can be obtained by assigning appropriate values to the con-
stants.

With fixed constants, the solution is called a particular solution.

Example. The general solutions to

y′′ = 18 cos(3x)

are of the form
y(x) = −2 cos(3x) + c1x+ c2.

However,
y(x) = −2 cos(3x) + x+ 5

is a particular solution.

Definition 12.4. An n-th order differential equation together with auxiliary conditions of the
form

y(x0) = y0, y′(x0) = y1, . . . , y(n−1)(x0) = yn−1,

where y0, y1, . . . , yn−1 are constants, is called an initial-value problem.

An example problem is like: Solve the initial-value problem

y′′ = 18 cos(3x), y(0) = 1, y′(0) = 4.

We know y(x) = −2 cos(3x) + c1x+ c2 is a general solution. Using y(0) = 1, we get

1 = 2 · 1 + c1 · 0 + c2,

so c2 = 3. Using y′(0) = 4 and y′ = 6 sin(3x) + c1, we get

4 = 0 + c1,

thus, the solution to the initial-value problem is

y(x) = −2 cos(3x) + 4x+ 3.
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Generally we ask:

Solve IVP
y(n) = f(x, y, y′, . . . , y(n−1))

subject to
y(x0) = y0, y′(x0) = y1, . . . , y(n−1)(x0) = yn−1,

where y0, y1, . . . , yn−1 are constants.

Remark. If f, y, y′, . . . , y(n−1) are "good" enough, then the IVP always has a unique
solution. See Picard’s Theorem. The proof is very involved and not our focus. Instead, we
will build tools to solve IVPs.

Example. Solve IVP

y′′ = cos(x), y(0) = 2, y′(0) = 1.

Integrate both sides of y′′ = cos(x) and we get y′ = sin(x) + c1. Integrate again and get
y = − cos(x) + c1x+ c2.

We have the general solution

y(x) = − cos(x) + c1x+ c2.

Also use the given initial values, and put

1. y′(0) = − sin(0) + c1 = 1,

2. y(0) = − cos(0) + c10 + c2 = −1 + c2 = 2,

So we get c1 = 1, c2 = 3. The solution is

y(x) = − cos(x) + x+ 3.

12.2 First-order Linear Differential Equations

Definition 12.5. A differential equation that can be written in the form

a(x)
dy

dx
+ b(x)y = c(x),

where a(x), b(x), c(x) are functions defined on an interval I is called a first-order linear differential
equation. Assuming a(x) ̸= 0 on I , we can divide both sides and get

dy

dx
+ p(x)y = q(x).

4



Before giving the idea to solve such equations, let’s do an example.

Example.
dy

dx
+ y = ex (2)

We want to play with the left part
(
dy
dx

+ y
)

to imitate product rule.

In other words, we want to have something like

f
dy

dx
+

df

dx
y

so that we can write it as
d

dx
(fy).

To do so let’s multiply the equation (2) with ex and get

ex
dy

dx
+ exy = e2x (3)

Since d
dx
(ex) = ex, we can write the equation (3) as

d

dx
(exy) = e2x.

Now, integrating both sides, we achieve

exy =
e2x

2
+ c.

Thus, we get the following general solution

y =
ex

2
+

c

ex
.

The main task is to find the right function to multiply the given equation. This function
is called the integrating factor.

Now, we’ll describe the integrating factor method for general First-order Linear ODEs.
We have

dy

dx
+ p(x)y = q(x). (4)

Suppose we have a function I(x) such that after multiplying (4) with I(x), we get

I(x)
dy

dx
+ I(x)p(x)y = I(x)q(x), (5)

and it can be expressed
d

dx
(I(x)y) = I(x)q(x). (6)

5



Namely, with I(x), we can use the product rule and simplify the given equation (4). Now,
we want to compute I(x). To find I we have to make sure that (5) and (6) are the same
equations. Since the product rule gives

d

dx
(I(x)y) = I(x)

dy

dx
+ y

dI

dx

it means that we have to achieve
dI

dx
= I(x)p(x). (7)

We can solve it as follows, first, divide both sides in (7) with I (assuming I > 0) and write
the same equation as

1

I(x)

dI

dx
= p(x).

Take its integral1 and get

ln I =

∫
p(x)dx+ c

Therefore
I = e

∫
p(x)dx+c = c1e

∫
p(x)dx

We need only one I(x) and common scalars can be omitted in (5), it means that we can

take c1 = 1, so

I(x) = e
∫
p(x)dx.

This is the integrating factor.

General way to solve y′ + p(x)y = q(x)

1. First, find the integrating factor I(x) = e
∫
p(x) dx.

2. Multiply the equation with I(x):

I(x)y′ + I(x)p(x)y = I(x)q(x),

3. Since I ′(x) = I(x)p(x), by the product rule, we get

[I(x)y]′ = I(x)q(x).

4. Take the integral of both sides and obtain

I(x)y =

∫
I(x)q(x) dx+ C.

5. Then the solution is

y =
1

I(x)

(∫
I(x)q(x) dx+ C

)
.

1Recall that
∫

dI
I = ln|I| and since we assume I > 0, we have

∫
dI
I = ln I
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Examples.

1.
x2y′ − 4xy = x7 sinx, x > 0.

First, write it as

y′ − 4

x
y = x5 sinx. (8)

Then the integrating factor is given by2

I(x) = e
∫
− 4

x
dx = e−4 lnx+c = c1e

−4 lnx =
c1
x4

.

So, multiply the equation (8) with c1
x4 and get

c1
x4

y′ − 4c1
x5

y = c1x sinx.

Since c1 can be omitted from both sides, and by the product rule, we get

d

dx

(
1

x4
y

)
= x sinx.

Integrate again and get

1

x4
y =

∫
x sinx dx = −x cosx+ sinx+ C

⇒ y = −x5 cosx+ x4 sinx+ Cx4.

2.
xy′ + 2y = x2 − x+ 1, x > 0.

First, write it as

y′ +
2

x
y = x− 1 +

1

x
. (9)

Then the integrating factor is given by

I(x) = e
∫

2
x
dx = e2 lnx+c = c1e

2 lnx = c1x
2.

So, multiply the equation (9) with c1x
2 and get

c1x
2y′ + 2c1xy = c1x

3 − c1x
2 + c1x.

Since c1 can be omitted from both sides, and by the product rule, we get

d

dx

(
x2y

)
= x3 − x2 + x.

2We used some properties of lnx and ex. For example, a lnx = lnxa, and eln x = x since lnx and ex are
inverses of each other

7



Integrate again and get

x2y =

∫
x3 − x2 + x dx =

x4

4
− x3

3
+

x2

2
+ C

⇒ y =
x2

4
− x

3
+

1

2
+

C

x2
.

3.
y′ +

2x

1 + x2
y =

4

(1 + x2)2
. (10)

Then the integrating factor is given by

I(x) = e
∫

2x
1+x2

dx
= eln(1+x2)+c = c1e

ln(1+x2) = c1(1 + x2).

So, multiply the equation (10) with c1(1 + x2) and get

c1(1 + x2)y′ + 2c1xy = c1
4

(1 + x2)
.

Since c1 can be omitted from both sides, and by the product rule, we get

d

dx

(
(1 + x2)y

)
=

4

(1 + x2)
.

Integrate again and get

(1 + x2)y =

∫
4

(1 + x2)
dx = 4arctanx+ C

⇒ y =
4arctanx

1 + x2
+

C

1 + x2
.

4.
y′ +

1

x lnx
y = 9x2. (11)

Then the integrating factor is given by3

I(x) = e
∫

1
x ln x

dx = eln(lnx)+c = c1e
ln(lnx) = c1 lnx.

So, multiply the equation (11) with c1 lnx and get

c1(lnx)y
′ +

c1
x
y = c1(lnx)9x

2.

Since c1 can be omitted from both sides, and by the product rule, we get

d

dx
((lnx)y) = (ln x)9x2.

3The integral
∫

1
x ln xdx can be computed by the substitution u = lnx.
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Integrate again and get4

(lnx)y =

∫
(lnx)9x2 dx = 3x3(lnx)− x3 + C

⇒ y = 3x3 − x3

lnx
+

C

lnx
.

4The right integral follows from the integration by parts.
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