Linear Algebra & Differential Equations

Elif Uskuplu

If you see any mistake, please email me (euskuplu@usc.edu).

13 Week 13

13.1 General Theory for Linear ODEs

We begin with recalling a vector space and a linear transformation. Let $C^k(I)$ be the set of functions with k continuous derivatives. This is indeed a subspace of Fun(*I*, \mathbb{R}) because if $f, g \in C^k(I)$ and $c \in \mathbb{R}$,

$$
(f+g)^{(k)} = f^{(k)} + g^{(k)}
$$
 (sum rule for derivative)

$$
(c \cdot f)^{(k)} = c \cdot f^{(k)},
$$

We have a particular linear transformation

$$
D: C^1(I) \to C^0(I)
$$

$$
D(f) = f'
$$

This is indeed a linear transformation since

$$
(a \cdot f + b \cdot g)' = a \cdot f' + b \cdot g'.
$$

Now, recall two facts about linear transformations:

- 1. Composite of linear transformations is again a linear transformation.
- 2. Linear combinations of linear transformations is again a linear transformation.

Thus, we can define a transformation D^k : $C^k(I) \rightarrow C^0(I)$ by composition $D^k =$ $D(D^{k-1})$. Also, if we have a_1, \ldots, a_n scalars, we can get a new linear transformation

$$
L = Dn + a1Dn-1 + \dots + an-1D + an.
$$

This transformation actually does

$$
L(y) = D^{n}(y) + a_1 D^{n-1}(y) + \dots + a_{n-1} D(y) + a_n y
$$

= $y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y$

Example Let $L = D^3 + 3D^2 - D + 5x$. Then we get $L(y) = y''' + 3y'' - y' + 5xy$. For example, if $y = \cos x$, then

$$
L(\cos x) = -\sin x - 3\cos x + \sin x + 5x\cos x
$$

= 2\sin x + (5x - 3)\cos x.

Now consider the general n -th order linear ODE

$$
a_0(x)y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = F(x)
$$

where $a_0(x) \neq 0$. We can divide the ODE by a_0 and assume the ODE is in the standard form:

$$
y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = F(x).
$$

Taking $L = D^n + a_1 D^{n-1} + \cdots + a_{n-1}D + a_n$, the ODE can be expressed as $L(y) = F(x)$. During the lectures, we assume a_1, \ldots, a_n , F are continuous functions, namely, all ODEs are regular.

The following are important notes about ODEs:

- 1. If $F(x) = 0$, we have $L(y) = 0$ and we call it **homogeneous ODE**.
- 2. If $F(x) \neq 0$, we have $L(y) = 0$ and we call it **nonhomogeneous ODE**.
- 3. If we denote the set of all solutions to the homogeneous ODE by S , we get

$$
S = \{ y \in C^n(I) \mid L(y) = 0 \} = \ker(L)
$$

This space will be called **the solution space** of the given ODE.

4. The solution space S has dimension n. (It is not an easy fact and needs proof, and it is in the textbook.) Therefore, any set of n linearly independent solutions $\{y_1, \ldots, y_n\}$

$$
y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = 0
$$

is a basis for the solution space. So every solution is of the form

$$
c_1y_1 + \cdots + c_ny_n
$$

where c_i are scalars. This is called the general solution to the ODE.

5. Recall that Wronskian is a nice tool to achieve linear independence of functions.

Whenever $W(f_1, \ldots, f_n)(x_0) \neq 0$ for some $x_0 \in I$, we get $\{f_1, \ldots, f_n\}$ is linearly independent. If $W(f_1, \ldots, f_n)(x) = 0$ for all $x \in I$, the tool is inconclusive.

However, if these functions f_1, \ldots, f_n are solutions to an ODE, the Wronskian method works also for dependency.

Theorem 13.1. Let y_1, \ldots, y_n be solutions to the regular nth order ODE $L(y) = 0$ on an *interval I. Let* $W(y_1, \ldots, y_n)(x)$ *denote their Wronskian. If* $W(y_1, \ldots, y_n)(x_0) = 0$ *at some point in I*, then $\{y_1, \ldots, y_n\}$ *is linearly dependent.*

Proof. Omitted.

Zero or nonzero Wronskian on an interval I completely characterizes whether solutions to $L(y) = 0$ are linearly dependent or linearly independent on I.

6. Using the solutions to the homogeneous ODE $L(y) = 0$, we can achieve the solutions to the nonhomogeneous ODE $L(y) = F(x)$.

Theorem 13.2. Let $\{y_1, \ldots, y_n\}$ be a linearly independent set of solutions to $L(y) = 0$ on an interval *I*. Let y_p be any particular solution to $L(y) = F(x)$. Then every solution to $L(y) = F(x)$ *on I is of the form*

$$
y = c_1y_1 + \cdots + c_ny_n + y_p
$$

for arbitrary constants c_1, \ldots, c_n *.*

Proof. Omitted.

Summary: For equations

$$
y^{(n)} + a_0(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = F(x),
$$

we write it as $L(y) = F(x)$ where

$$
L = D^{n} + a_0 D^{n-1} + \cdots + a_{n-1} D + a_n.
$$

We will first solve $L(y) = 0$ and it gives the solutions for homogeneous ODEs. Using particular solutions to $L(y) = F(x)$, we achieve all solutions for nonhomogeneous ODEs.

Examples.

1. Consider

$$
y''' + x^2y' - (\sin x)y + e^x y = x^3.
$$
 (1)

Then define

$$
L = D^3 + x^2 D - \sin x D + e^x.
$$

So [\(1\)](#page-2-0) can be written as

$$
L(y) = x^3,
$$

We can solve $L(y) = 0$ first, and find a particular solution to $L(y) = x^3$, Then these together give the general solution to [\(1\)](#page-2-0).

 \Box

 \Box

2. Consider the ODE

$$
y'' - 16y = 0.
$$

Determine which of the following sets of vectors is a basis for its solution space.

$$
S_1 = \{e^{4x}, e^{-4x}\}, S_2 = \{e^{2x}, e^{4x}, e^{-4x}\}, S_3 = \{e^{4x}, e^{2x}\}\
$$

$$
S_4 = \{e^{4x}, e^{-4x}\}, S_5 = \{e^{4x}, 7e^{4x}\}\
$$

Answer. Since the ODE is of order 2, the solution space is 2-dimensional. So S_1 , S_4 , S_5 can be a basis.

$$
S_3=\{e^{4x},e^{2x}\}
$$

First, we need to check if e^{4x} , e^{2x} are solutions.

$$
(e^{4x})'' - 16(e^{4x}) = 16e^{4x} - 16e^{4x} = 0 \quad \checkmark
$$

$$
(e^{2x})'' - 16(e^{2x}) = 4e^{2x} - 16e^{2x} \neq 0 \quad \checkmark
$$

So S_3 cannot be a basis.

$$
S_4 = \{e^{4x}, e^{-4x}\}
$$

 e^{4x} is already a solution,

$$
(e^{-4x})'' - 16(e^{-4x}) = (-4)(-4)e^{-4x} - 16e^{-4x} = 0 \quad \checkmark
$$

Also

$$
W(e^{4x}, e^{-4x}) = \det \begin{pmatrix} e^{4x} & e^{-4x} \\ 4e^{4x} & -4e^{-4x} \end{pmatrix} = -8e^{8x} \neq 0 \text{ if } x = 0,
$$

So S_4 is independent, and thus a basis for the solution space.

$$
S_5=\{e^{4x},7e^{4x}\}
$$

Since $7e^{4x}$ is a scalar multiple of e^{4x} , S_5 is dependent. So S_5 cannot be a basis.

3. Determine two linearly independent solutions to the $y'' - 7y' + 10y = 0$ of the form $y(x) = e^{rx}$ and determine the general solution

Answer.

$$
(e^{rx})'' - 7(e^{rx})' + 10(e^{rx}) = 0
$$

$$
r^{2}e^{rx} - 7re^{rx} + 10e^{rx} = 0
$$

$$
e^{rx}(r^{2} - 7r + 10) = 0.
$$

Since $e^{rx} \neq 0$, we must have $r^2 - 7r + 10 = 0$. Since $r^2 - 7r + 10 = (r - 5)(r - 2)$, we get $r=5,2$. By Wronskian, e^{5x} and e^{2x} are independent. So the general solutions to $y'' - 7y' - 10y = 0$ are of the form $c_1e^{5x} + c_2e^{2x}$.

4. Determine two linearly independent solutions to the $x^2y''+3xy'-8y=0$ of the form $y(x) = x^r$ and determine the general solution on $(0, \infty)$.

Answer.

$$
x^{2}(x^{r})'' + 3x(x^{r})' - 8x^{r} = 0
$$

$$
r(r - 1)x^{r} + 3rx^{r-1} - 8x^{r} = 0
$$

$$
(r(r - 1) + 3r - 8)x^{r} = 0
$$

$$
(r^{2} + 2r - 8)x^{r} = 0
$$

So $r^2 + 2r - 8 = 0$ which means $(r + 4)(r - 2) = 0$. Thus x^{-4} and x^2 are solutions for the ODE. Use the Wronskian

$$
W(x^{-4}, x^2)(x) = \det \begin{pmatrix} x^{-4} & x^2 \\ -4x^{-5} & 2x \end{pmatrix} = 2x^{-3} + 4x^{-3} = 6x^{-3}.
$$

If $x \neq 0$, then $W(x^{-4}, x^2)(x) \neq 0$. So x^{-4} and x^2 are independent. The general solution to $x^2y'' + 3xy' - 8y = 0$ is of the form

$$
c_1 x^{-4} + c_2 x^2.
$$

5. Determine a particular solution to the given differential equation of the form $y_p(x) =$ $A_0 + A_1 x + A_2 x^2$. Also find the general solution to the differential equation

$$
y'' + y' - 2y = 4x^2 + 5.
$$

Answer. Suppose $y_p(x)$ gives a solution, so we must have

$$
(y_p)'' + (y_p)' - 2(y_p) = 4x^2 + 5
$$

(2A₂) + (A₁ + 2A₂x) - 2(A₀ + A₁x + A₂x²) = 4x² + 5
-2A₂x² + (2A₂ - 2A₁)x + (2A₁ + 2A₂ - 2A₀) = 4x² + 5

Therefore $A_2 = -2, A_1 = -2, A_0 = -\frac{11}{2}$ $\frac{11}{2}$. For general solution, first we solve \mathbf{u} \mathbf{v}

$$
y'' + y' - 2y = 0.
$$

Note, when all coefficients are constants, the solutions are of the form e^{rx} .

$$
(e^{rx})'' + (e^{rx})' - 2(e^{rx}) = 0
$$

$$
r^{2}e^{rx} + re^{rx} - 2e^{rx} = 0
$$

$$
(r^{2} + r - 2)e^{rx} = 0
$$

 \Rightarrow $r^2 + r - 1 = (r + 2)(r - 1) = 0$, namely $r = -2, 1$.

By Wronskian, it is easy to see that e^{-2x} and e^x are independent.

⇒ the general solution to $y'' + y' - 2y = 0$ is of the form $c_1e^{-2x} + c_2e^x$.

 \Rightarrow the general solution to $y'' + y' - 2y = 4x + 5$ is of the form

$$
c_1e^{-2x} + c_2e^x - \frac{11}{2} - 2x - 2x^2.
$$

13.2 Constant Coefficient Homogeneous Linear ODEs

In the next few sections, we develop methods for solving linear equations of order n that have only constant coefficients. Namely, our focus is the equation of the form

$$
y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = F(x)
$$

where a_1, \ldots, a_n are constants (not functions). First, we'll learn how to solve it when $F(x) = 0$. Second, we'll learn how to solve it for arbitrary $F(x)$.

We begin with writing such an homogeneous ODE using linear transformation. This is given by

$$
\mathcal{P}(D)y=0
$$

where $\mathcal{P}(D) = D^n + a_1 D^{n-1} + \cdots + a_{n-1}D + a_n$. This is called **polynomial differential operator**, and we can write this as a real polynomial

$$
\mathcal{P}(r) = r^n + a_1 r^{n-1} + \dots + a_{n-1} r + a_n.
$$

We will see that solving

$$
y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0
$$

will be the same as solving $P(r) = 0$.

Since any polynomial can be expressed as a product of linear factors

$$
\mathcal{P}(r) = (r - r_1)^{m_1}(r - r_2)^{m_2} \cdots (r - r_k)^{m_k},
$$

we first focus on these factors. Namely, if we have the differential equation

$$
(D - r1)m1(D - r2)m2 \cdots (D - rk)mky = 0,
$$

we will first learn how to solve

$$
(D - r_i)^{m_i} y = 0.
$$

Lemma 13.3. *Consider the differential operator* $(D - a)^m$ *, where* m *is a positive integer and a is a real or complex number. For any* $u \in C^m(I)$, we get

$$
(D - a)^m (e^{ax}u) = e^{ax}D^m(u).
$$

Proof. If $m = 1$,

$$
(D - a)(e^{ax}u) = D(e^{ax}u) - a(e^{ax}u) = e^{ax}D(u) + ae^{ax}u - ae^{ax}u = e^{ax}D(u),
$$

By induction, we can repeat the process for higher m .

Theorem 13.4. The differential equation $(D - a)^m y = 0$ where m is a positive integer and a *is a real or complex number, has the following* m *solutions that are linearly independent on any interval:*

$$
e^{ax}, xe^{ax}, \ldots, x^{m-1}e^{ax}.
$$

Proof. Using previous lemma

$$
(D - a)^m (x^k e^{ax}) = e^{ax} D^m (x^k) = e^{ax} \cdot 0 = 0.
$$

Indeed, since $m > k$, after taking m derivatives of x^k we get 0. Therefore $x^k e^{ax}$ is a solution for any $k = 0, \ldots, m - 1$. Also, they are independent since

$$
c_1 e^{ax} + c_2 x e^{ax} + \dots + c_m x^{m-1} e^{ax} = 0
$$

implies (after dividing both sides with e^{ax})

$$
c_1 + c_2 x + \dots + c_m x^{m-1} = 0.
$$

Since $\{1, x, ..., x^{m-1}\}$ is independent, we get $c_1 = c_2 = \cdots = c_m = 0$.

Using this theorem, we obtain the general solutions to the differential equation

$$
(D - r1)m1(D - r2)m2 \cdots (D - rk)mky = 0.
$$

1. For $(D - r)^m$ where r is real, we have independent solutions

$$
e^{rx}, xe^{rx}, \ldots, x^{m-1}e^{rx}.
$$

2. For $(D - r)^m$ where $r = a + ib$, we have independent solutions

$$
e^{(a+ib)x}, xe^{(a+ib)x}, \ldots, x^m e^{(a+ib)x}.
$$

Using the fact $e^{(a+ib)x} = e^{ax}(\cos bx + i \sin bx)$, observe that we have solutions

$$
x^k e^{ax}(\cos bx + i \sin bx) = w_1
$$

and

 $x^k e^{ax}(\cos bx - i\sin bx) = w_2.$

Then their linear combinations, as below, give other solutions:

$$
\frac{1}{2}(w_1 + w_2) = x^k e^{ax} \cos bx
$$

 \Box

 \Box

and

$$
\frac{1}{2i}(w_1 - w_2) = x^k e^{ax} \sin bx.
$$

Therefore, we achieve 2m solutions,

 $e^{ax}\cos bx, xe^{ax}\cos bx, \ldots, x^{m-1}e^{ax}\cos bx,$ $e^{ax}\sin bx, xe^{ax}\sin bx, \ldots, x^{m-1}e^{ax}\sin bx.$

3. From the previous two parts, we achieve n linearly independent solutions. Therefore, if y_1, \ldots, y_n are those solutions, the general solution to the equation is given by

$$
y = c_1 y_1(x) + c_2 y_2(x) + \cdots + c_n y_n(x).
$$

Examples.

1. Determine the general solution to the equation

$$
y'' - y' - 2y = 0.
$$

Solution. Its differential operator is

$$
D2 - D - 2 = (D - 2)(D + 1),
$$

So the roots are 2 and −1. Therefore, the general solution to the equation is

$$
y(x) = c_1 e^{2x} + c_2 e^{-x}.
$$

2. Determine the general solution to the equation

$$
(D+2)^2y=0.
$$

Solution. The only root is −2. So the general solution is

$$
y(x) = c_1 e^{-2x} + c_2 x e^{-2x}.
$$

3. Determine the general solution to the equation

$$
y''' - y'' + y' - y = 0.
$$

Solution. Its differential operator is

$$
D^3 - D^2 + D - 1 = 0.
$$

It can be factorized as

$$
(D-1)(D^{2}+1).
$$

The roots are 1 and $\pm i$. Therefore, the general solution is

$$
y(x) = c_1 e^x + c_2 e^{0x} \cos x + c_3 e^{0x} \sin x = c_1 e^x + c_2 \cos x + c_3 \sin x.
$$

4. Determine the general solution to the equation

$$
(D2 + 3)(D + 1)2y = 0.
$$

Solution. The roots are \pm √ $3i$ and -1 . So the general solution is

$$
y(x) = c_1 e^{-x} + c_2 x e^{-x} + c_3 \cos(\sqrt{3}x) + c_4 \sin(\sqrt{3}x).
$$

5. Determine the general solution to the equation

$$
(D^2 + 2D + 10)^2 y = 0.
$$

Solution. The roots are $-1 \pm 3i$. Therefore, the general solution is

$$
y(x) = c_1 e^{-x} \cos(3x) + c_2 e^{-x} \sin(3x) + c_3 x e^{-x} \cos(3x) + c_4 x e^{-x} \sin(3x).
$$

6. Determine the general solution to the equation

$$
y^{(4)} - 16y = 0.
$$

Solution. Its differential operator is $D^4 - 16$. It can be factorized as

$$
(D-2)(D+2)(D^2+4),
$$

and its roots are $2, -2, \pm 2i$. Thus, the general solution is

$$
y(x) = c_1 e^{2x} + c_2 e^{-2x} + c_3 \cos(2x) + c_4 \sin(2x).
$$

7. Solve the IVP:

$$
y'' - 8y' + 16y = 0, \quad y(0) = 2, \quad y'(0) = 7.
$$

Solution. Its differential operator is

$$
D^2 - 8D + 16 = (D - 4)^2.
$$

So the only root is 4. The general solution is

$$
y(x) = c_1 e^{4x} + c_2 x e^{4x}.
$$

Then $y'(x) = 4c_1e^{4x} + c_2e^{4x} + 4c_2xe^{4x}$. Using the initial values and set

$$
y(0) = c_1 = 2
$$
, $y'(0) = 4c_1 + c_2 = 7$.

Thus, $c_1 = 2$ and $c_2 = -1$. So the particular solution is

$$
y_p(x) = 2e^{4x} - xe^{4x}
$$

.

13.3 The Method of Undetermined Coefficients: Annihilators

In the previous section, we focused on solving constant coefficient homogeneous ODE $P(D)y = 0$. Now we will provide the solution for nonhomogeneous case. Recall the solutions to $P(D)y = F(x)$ are of the form

$$
y(x) = y_c(x) + y_p(x)
$$

where $y_c(x)$ is the general solution to $P(D)y = 0$ and $y_p(x)$ is a particular solution to $P(D)y = F(x)$. Thus, our next step is considering how we can find $y_p(x)$.

Before giving the whole process, let's do an example.

Example:

$$
(D+5)(D+2)y = 14e^{2x}.
$$

Step (1) Solve $(D+5)(D+2)y = 0$. From the previous section, we know the general solution is of the form

$$
c_1 e^{-5x} + c_2 e^{-2x},
$$

Step (2) Find a particular solution to $(D+5)(D+2)y = 14e^{2x}$.

Suppose we have another operator $A(D)$ such that $A(D)(14e^{2x}) = 0$. Because then we would have

$$
A(D)(D+5)(D+2)y = A(D)(14e^{2x}) = 0,
$$

so this would be another homogeneous equation.

It is easy to see that $A(D) = D - 2$. Indeed

$$
(D-2)(14e^{2x}) = (14e^{2x})' - 2(14e^{2x}) = 28e^{2x} - 28e^{2x} = 0.
$$

Now the general solution for $(D-2)(D+5)(D+2)$ is of the form

$$
c_1 e^{-5x} + c_2 e^{-2x} + A_0 e^{2x}.
$$

The solution must contain a particular solution to $(D+5)(D+2)y = 14e^{2x}$, we already know $(D+5)(D+2)(c_1e^{-5x} + c_2e^{-2x}) = 0$, so we need to verify

$$
(D+5)(D+2)(A_0e^{2x}) = 14e^{2x}.
$$

\n
$$
(D+5)(D+2)(A_0e^{2x}) = (D^2 + 7D + 10)(A_0e^{2x}) = 4A_0e^{2x} + 14A_0e^{2x} + 10A_0e^{2x} = 14e^{2x}
$$

\n
$$
\Rightarrow 28A_0e^{2x} = 14e^{2x}
$$

\n
$$
\Rightarrow A_0 = \frac{1}{2}.
$$

Therefore, the general solution to the initial nonhomogeneous ODE is

$$
c_1e^{-5x} + c_2e^{-2x} + \frac{e^{2x}}{2}.
$$

The trick in this solution is to find $A(D)$ because thanks to $A(D)$ we could achieve the particular solution. This function is called **annihilator** of F. And this whole technique is called "**the method of undetermined coefficients**".

Remark: Note that annihilators satisfies the equation $A(D)F(x) = 0$. Therefore, $F(x)$ can be $c \cdot e^{ax}$, $c \cdot e^{ax} \cos(bx)$, $c \cdot e^{ax} \sin(bx)$, or sum of these. So the annihilator method can be used for such cases. And we have the annihilators for all cases:

1. $A(D) = (D - a)^{k+1}$ annihilates each of

$$
e^{ax}, xe^{ax}, \ldots, x^k e^{ax},
$$

and their linear combinations.

2. $A(D) = (D^2 - 2aD + a^2 + b^2)^{k+1}$ annihilates each of $e^{ax}\cos bx, xe^{ax}\cos bx, \ldots, x^k e^{ax}\cos bx,$ $e^{ax}\sin bx, xe^{ax}\sin bx, \ldots, x^k e^{ax}\sin bx,$

and their linear combinations.

3. The linear combinations of first type and second type functions are annihilated by the product of individual annihilators.

Examples.

- 1. $F(x) = 5e^{-3x}$ is annihilated by $A(D) = (D + 3)$. Indeed, $(D+3)(5e^{-3x}) = (5e^{-3x})' + 3(5e^{-3x}) = -15e^{-3x} + 15e^{-3x} = 0.$
- 2. $F(x) = 2e^x 3x$.

 $2e^x$ is annihilated by $(D-1)$. $-3x = -3xe^0$ is annihilated by $(D-0)^2 = D^2$. Thus, the annihilator of $F(x)$ is $D^2(D-1) = D^3 - D^2$. Indeed,

$$
(D3 - D2)(2ex - 3x) = (2ex - 3x)''' - (2ex - 3x)'' = 2ex - 2ex = 0.
$$

3. $F(x) = x^3 e^7 x + 5 \sin 4x$.

 x^3e^7x is annihilated by $(D-7)^4$. $5\sin 4x = 5e^{0x}\sin 4x$ is annihilated by $(D^2 + 16)$. Thus, the annihilator of $F(x)$ is $(D^2 + 16)(D - 7)^4$.

4. $F(x) = 4e^{-2x} \sin x$ is annihilated by

$$
(D2 - 2(-2)D + (-2)2 + 12)1 = D2 + 4D + 5.
$$

Exercise. Verify $(D^2 + 4D + 5)(F(x)) = 0$ *.*

5. $F(x) = (1 - 3x)e^{4x} + 2x^2 = e^{4x} - 3xe^{4x} + 2x^2$

 $e^{4x}-3xe^{4x}$ is annihilated by $(D-4)^2$ and $2x^2$ is annihilated by D^3 , so $F(x)$ is annihilated by $D^3(D-4)^2$.

- 6. $F(x) = e^{4x}(x 2\sin 5x) + 3x x^2e^{-2x}\cos x$
	- xe^{4x} is annihilated by $(D-4)^2$.
	- $-2e^{4x} \sin 5x$ is annihilated by $D^2 8D + 41$.
	- 3x is annihilated by D^2 .
	- $-x^2e^{-2x}\cos x$ is annihilated by $(D^2 + 4D + 5)^3$.

So $F(x)$ is annihilated by

$$
(D-4)^2(D^2-8D+41)D^2(D^2+4D+5)^3.
$$

Example. Find the general solution to

$$
D(D+3)y = 5x + xe^x.
$$

First, the general solution to $D(D+3)y = 0$ is

$$
c_1 + c_2 e^{-3x}.
$$

The annihilator of $5x + xe^x$ is $D^2(D-1)^2$. Now, we have the new homogeneous ODE

$$
D2(D-1)2D(D+3)y = D3(D-1)2(D+3)y = 0.
$$

Its general solution is

$$
c_1 + c_2 e^{-3x} + A_0 x + A_1 x^2 + A_2 e^x + A_3 x e^x.
$$

Therefore, we expect to have

$$
D(D+3)(c_1 + c_2e^{-3x} + A_0x + A_1x^2 + A_2e^x + A_3xe^x) = 5x + xe^x,
$$

namely, (since $D(D+3)(c_1+c_2e^{-3x})=0$)

$$
D(D+3)(A_0x + A_1x^2 + A_2e^x + A_3xe^x) = 5x + xe^x.
$$

We have

$$
D(D+3)(A_0x + A_1x^2 + A_2e^x + A_3xe^x)
$$

= $(A_0x + A_1x^2 + A_2e^x + A_3xe^x)'' + 3(A_0x + A_1x^2 + A_2e^x + A_3xe^x)'$
= $(2A_1 + (A_2 + 2A_3)e^x + A_3xe^x) + (3A_0 + 6A_1x + 3(A_2 + A_3)e^x + 3A_3xe^x)$
= $(3A_0 + 2A_1) + (6A_1)x + (4A_2 + 5A_3)e^x + 4A_3xe^x$

Therefore, $A_1 = \frac{5}{6}$ $\frac{5}{6}$ and $A_3 = \frac{1}{4}$ $\frac{1}{4}$, and so $A_0 = -\frac{5}{9}$ $\frac{5}{9}$ and $A_2 = -\frac{5}{16}$. In other words, the particular solution is

$$
-\frac{5x}{9} + \frac{5x^2}{6} - \frac{5e^x}{16} + \frac{xe^x}{4}
$$

.

The general solution to $D(D+3)y = 5x + xe^x$ is then

$$
c_1 + c_2 e^{-3x} - \frac{5x}{9} + \frac{5x^2}{6} - \frac{5e^x}{16} + \frac{xe^x}{4}.
$$