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13 Week 13

13.1 General Theory for Linear ODEs

We begin with recalling a vector space and a linear transformation.
Let C*(I) be the set of functions with k continuous derivatives.

This is indeed a subspace of Fun(/, R) because if f,g € C*(I) and ¢ € R,
(f+9)® = f® 4 ¢®  (sum rule for derivative)
(- /P = c- ¥,

We have a particular linear transformation

D : CYI) — C°(I)

D(f)=rf
This is indeed a linear transformation since
(a-f+b-g))=a-f+b-g.

Now, recall two facts about linear transformations:

1. Composite of linear transformations is again a linear transformation.

2. Linear combinations of linear transformations is again a linear transformation.

Thus, we can define a transformation D* : C*(I) — C°(I) by composition D* =
D(DF1). Also, if we have ay, .. ., a, scalars, we can get a new linear transformation

L=D"+aD" '+ ---+a, 1D +a,.
This transformation actually does

L(y) = D"(y) + axD" "' (y) + - - + an_1D(y) + any
=y a4ty + any



Example Let L = D?* + 3D? — D + 5z. Then we get L(y) = v + 3y” — y' + bay. For
example, if y = cos z, then

L(cosx) = —sinx — 3cosx + sinz + bxcosx

= 2sinx + (5bx — 3) cos x.

Now consider the general n-th order linear ODE
ao(@)y™ + ar(2)y" Y + -t ana (@)Y + an(2)y = Fo)

where ay(x) # 0. We can divide the ODE by a( and assume the ODE is in the standard
form:
Y™+ ay(z)y" Y 4+ an (2)y + an(@)y = F(2).

Taking L = D"+ a;D" ' +---+a,_1D + a,, the ODE can be expressed as L(y) = F(z).
During the lectures, we assume ay, .. ., a,, F' are continuous functions, namely, all ODEs
are regular.

The following are important notes about ODEs:

1. If F(x) = 0, we have L(y) = 0 and we call it homogeneous ODE.
2. If F(x) # 0, we have L(y) = 0 and we call it nonhomogeneous ODE.

3. If we denote the set of all solutions to the homogeneous ODE by S, we get
S ={y e C"(I) | L(y) = 0} = ker(L)
This space will be called the solution space of the given ODE.

4. The solution space S has dimension n. (It is not an easy fact and needs proof,
and it is in the textbook.) Therefore, any set of n linearly independent solutions

{ylv cee ayn}
Y™ 4 al(x)y(”_l) + ot a1 ()Y +an(x)y =0

is a basis for the solution space. So every solution is of the form
C1yr + -+ Culn

where ¢; are scalars. This is called the general solution to the ODE.

5. Recall that Wronskian is a nice tool to achieve linear independence of functions.

Whenever W(fi,..., fu)(zo) # 0 for some z, € I, we get {fi,..., f,} is linearly
independent. If W(f,..., f,)(x) = 0 for all x € I, the tool is inconclusive.

However, if these functions f1, .. ., f,, are solutions to an ODE, the Wronskian method
works also for dependency.



Theorem 13.1. Let vy, ..., y, be solutions to the reqular nth order ODE L(y) = 0 on an
interval 1. Let W (y1, . .., yn)(x) denote their Wronskian. If W (yu, ..., yn)(xo) = 0 at some
point in I, then {yy,...,y,} is linearly dependent.

Proof. Omitted. L

Zero or nonzero Wronskian on an interval / completely characterizes whether
solutions to L(y) = 0 are linearly dependent or linearly independent on I.

6. Using the solutions to the homogeneous ODE L(y) = 0, we can achieve the solutions
to the nonhomogeneous ODE L(y) = F(x).

Theorem 13.2. Let {yy,...,y,} be a linearly independent set of solutions to L(y) = 0 on
an interval 1. Let y, be any particular solution to L(y) = F(x). Then every solution to
L(y) = F(x) on I is of the form

y=can+--+culat Y

for arbitrary constants c, . .., cy.

Proof. Omitted. O

Summary: For equations
Y™+ ag(2)y" T + -+ ana (@)Y + an(2)y = F(2),
we write it as L(y) = F'(x) where
L=D"+aD" '+ - - +a,_1D + a,.

We will first solve L(y) = 0 and it gives the solutions for homogeneous ODEs. Using
particular solutions to L(y) = F(z), we achieve all solutions for nonhomogeneous
ODEs.

Examples.

1. Consider
1

y" + 2%y — (sina)y + 'y = 2°. (1)

Then define
L=D>+2°D —sinzD + ¢*.

So (1) can be written as
L(y) =,

We can solve L(y) = 0 first, and find a particular solution to L(y) = z*, Then these
together give the general solution to (1)).
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2. Consider the ODE
y" — 16y = 0.

Determine which of the following sets of vectors is a basis for its solution space.
Sl — {6417674:13}7 SQ — {62:137 64:1:’ 6741}’ 53 — {€4I’€2$}

54 — {643;,6_49&}, 5«5 — {64:5’76495}

Answer. Since the ODE is of order 2, the solution space is 2-dimensional. So Sy, S,
S5 can be a basis.

S3 _ {e4x’ e2x}

First, we need to check if e**, ¢?* are solutions.

(e*™)" —16(e*™) = 16e** — 16e** =0 v

(e¥)" — 16(e*") = 4e** — 16e** #0 x

So S5 cannot be a basis.

S4 — {e4x,e—4x}

e*” is already a solution,

(e™*) —16(e™**) = (—4)(—4)e ™ —16e ™ =0

Also

Wie o) =det ( Cr € ) = 86 £0if2 =0
e’ e =det{ a0y a0 | = =8¢ xz =0,
So S, is independent, and thus a basis for the solution space.

S5 — {e4x’ 7e4x}
Since 7e*” is a scalar multiple of ¢**, S; is dependent. So S5 cannot be a basis.

3. Determine two linearly independent solutions to the v — 7y’ + 10y = 0 of the form
y(z) = € and determine the general solution

Answer.
(67"27)// o 7(6TI>/ _|_ 10(67"1'> — O
r2e™ — Tre™ 4+ 10e™ = 0

e (r* — 7r +10) = 0.



Since €™ # 0, we must have r? — 7r + 10 = 0. Since r? — 7r + 10 = (r — 5)(r — 2), we
get r = 5, 2. By Wronskian, ¢* and ¢** are independent. So the general solutions to
y" — 7y’ — 10y = 0 are of the form c;e® + cye**.

. Determine two linearly independent solutions to the z?y” + 32y’ — 8y = 0 of the form
y(x) = 2" and determine the general solution on (0, o).
Answer.
(") + 3x(2") — 82" =0
r(r—1)z" 4+ 3ra" ' — 82" =0
(r(r—1)+3r—8)z" =0
(r* +2r —8)2" =0
So 72 + 2r — 8 = 0 which means (r + 4)(r — 2) = 0. Thus z~* and 22 are solutions for
the ODE. Use the Wronskian
—4

2
91; v ) =203 + 4273 = 6273,

—4 2 _
Wiz, 2%)(x) = det (—4x_5 o

If  # 0, then W(z~* 2%)(x) # 0. So 2~* and z? are independent. The general
solution to z2y” + 3zy’ — 8y = 0 is of the form

clx74 + 02x2.

. Determine a particular solution to the given differential equation of the form y,(z) =
Ay + Ajx + Asx®. Also find the general solution to the differential equation

y' +y =2y =42 +5.

Answer. Suppose y,(x) gives a solution, so we must have

(yp)u + (yp), —2(yp) = 47% 45
(242) + (A + 2452) — 2(Ag + Ay + Aga®) = 4a® +5
—2A52% + (245 — 2A))x + (2A; + 245 — 24¢) = A% 15

Therefore Ay = —2, A1 = —2, Ay = —131. For general solution, first we solve
y//_*_y/_Qy:O‘
Note, when all coefficients are constants, the solutions are of the form e"*.

(em:)// + (erx)/ o 2(67“90) =0
T2€mt _|_T,€'rx . 2emz =0

(r* +7r—2)e™ =0



=7r’+r—1=(r+2)(r—1) =0, namely r = -2, 1.
By Wronskian, it is easy to see that e~2* and e* are independent.
= the general solution to y” + y' — 2y = 0 is of the form c;e™** + cye®.

= the general solution to y” + y' — 2y = 42 + 5 is of the form

16”2 4 e — — — 2x — 222

13.2 Constant Coefficient Homogeneous Linear ODEs

In the next few sections, we develop methods for solving linear equations of order n
that have only constant coefficients. Namely, our focus is the equation of the form

y(") + aly("fl) +F a1y + any = F(x)

where a4, ...,a, are constants (not functions). First, we’ll learn how to solve it when
F(z) = 0. Second, we’ll learn how to solve it for arbitrary F'(x).

We begin with writing such an homogeneous ODE using linear transformation. This
is given by
P(D)y =0

where P(D) = D" + ;D" ' +--- + a,_1D + a,. This is called polynomial differential
operator, and we can write this as a real polynomial

P(r)=r"+ayr™ '+ +a, 17+ a,.
We will see that solving
g™+ ary™ TV a1y 4 any =0

will be the same as solving P(r) = 0.

Since any polynomial can be expressed as a product of linear factors
P(r) = (r—mr)™(r—re)™ - (r —re)™,
we first focus on these factors. Namely, if we have the differential equation
(D = 7)™ (D = 1) -+ (D —ri)"™y = 0,

we will first learn how to solve

Lemma 13.3. Consider the differential operator (D — a)™, where m is a positive integer and a is
a real or complex number. For any u € C™(I), we get

(D —a)™(e"™u) = e**D™(u).

6



Proof. It m =1,
(D —a)(e™u) = D(e™u) — a(e®u) = e D(u) + ae®™u — ae®™u = e** D(u),
By induction, we can repeat the process for higher m. O

Theorem 13.4. The differential equation (D — a)™y = 0 where m is a positive integer and a
is a real or complex number, has the following m solutions that are linearly independent on any
interval:

-1
e e . " e,

Proof. Using previous lemma
(D — a)™(z"e) = e D™ (2*) = -0 = 0.

Indeed, since m > k, after taking m derivatives of 2* we get 0. Therefore ¥ is a solution
forany k = 0,...,m — 1. Also, they are independent since

c1e™ + coxe™ + -+ epr™ e =0
implies (after dividing both sides with e**)
1 cr 4™t =0.
Since {1,z,...,2™ '} is independent, we getc; = ¢y = -+ - = ¢,, = 0. O
Using this theorem, we obtain the general solutions to the differential equation
(D —1r1)™ (D —1rg)™ - (D —1r)™y =0.

1. For (D — r)™ where 7 is real, we have independent solutions

-1
e xe™ L a" e,

2. For (D — r)™ where r = a + ib, we have independent solutions

e(a—l—ib)x a+ib)x

el ..., xmelatib)T,
Using the fact (@) = ¢9%(cos bx + i sin bx), observe that we have solutions

z"e"(cos bx + i sin br) = w,

and

2*e™ (cos bx — i sin bx) = ws.

Then their linear combinations, as below, give other solutions:
1 k _azx
é(wl + wy) = z"e" cos bx
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and

1 :
—(wy — wy) = x¥e® sin ba.
21
Therefore, we achieve 2m solutions,
e cos bx, re® cos bz, ..., x™ L™ cos bz,
€™ sin bz, ze® sin bz, . .., 2™ e sin br.

3. From the previous two parts, we achieve n linearly independent solutions. There-
fore, if y;, ..., y, are those solutions, the general solution to the equation is given

by
y = c1y1(x) + coya(x) + - - - + cuyn(x).

Examples.

1. Determine the general solution to the equation
y' —y' =2y =0.
Solution. Its differential operator is
D?*~D—2=(D-2)(D+1),

So the roots are 2 and —1. Therefore, the general solution to the equation is

y(r) = c1e* + cpe”.

2. Determine the general solution to the equation
(D +2)*y = 0.
Solution. The only root is —2. So the general solution is

y(x) = cre”* + cyme ™.

3. Determine the general solution to the equation
"' —y"+y —y=0,
Solution. Its differential operator is
D*-D*+D—-1=0.

It can be factorized as
(D —1)(D* +1).

The roots are 1 and +i. Therefore, the general solution is

y(x) = c1e” + e’ cosx + c3e’ sinaz = c1e” + ¢y cosx + ¢z sin .
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4. Determine the general solution to the equation
(D?* +3)(D + 1)%y = 0.
Solution. The roots are ++/3i and —1. So the general solution is

y(z) = cre™® + care™ + ¢3 cos(V3x) 4 ¢4 sin(vV3x).

5. Determine the general solution to the equation
(D*+2D + 10)%*y = 0.
Solution. The roots are —1 =+ 3:. Therefore, the general solution is

y(x) = cre” " cos(3z) + cae” “sin(3x) + cgre™* cos(3x) + cyre” * sin(3x).

6. Determine the general solution to the equation
y@ — 16y = 0.
Solution. Its differential operator is D* — 16. It can be factorized as
(D —2)(D +2)(D? + 4),
and its roots are 2, —2, +2i. Thus, the general solution is

y(z) = c1€™ + cae” > + c3 cos(2x) + ¢4 sin(2z).

7. Solve the IVP:
y' =8y + 16y =0, y(0)=2, ¢(0)=T1.
Solution. Its differential operator is
D? —8D +16 = (D — 4)*.
So the only root is 4. The general solution is
y(x) = cre* + cpze™.
Then y/(z) = 4c1€* + ce*® + 4cyxe?®. Using the initial values and set
y(0)=c1 =2, ¢ (0)=4dc1+c=T.
Thus, ¢; = 2 and ¢, = —1. So the particular solution is

yp() = 2 — ze®,



13.3 The Method of Undetermined Coefficients: Annihilators

In the previous section, we focused on solving constant coefficient homogeneous ODE
P(D)y = 0. Now we will provide the solution for nonhomogeneous case. Recall the
solutions to P(D)y = F(z) are of the form

y(x) = ye(r) + yp()
where y.(z) is the general solution to P(D)y = 0 and y,(x) is a particular solution to
P(D)y = F(z). Thus, our next step is considering how we can find y, ().
Before giving the whole process, let’s do an example.
Example:

(D +5)(D +2)y = 14e*".

Step (1) Solve (D + 5)(D + 2)y = 0. From the previous section, we know the general

solution is of the form

cle—&v 4 026_21,

Step (2) Find a particular solution to (D + 5)(D + 2)y = 14e**.

Suppose we have another operator A(D) such that A(D)(14e*") = 0. Because then we
would have
A(D)(D +5)(D + 2)y = A(D)(14e*) = 0,

so this would be another homogeneous equation.

It is easy to see that A(D) = D — 2. Indeed

(D — 2)(14e*) = (14e**) — 2(14e*") = 28¢*" — 28¢*" = 0.

Now the general solution for (D — 2)(D + 5)(D + 2) is of the form
c1675% 4 coe™ 2 4 Ape?®.

The solution must contain a particular solution to (D + 5)(D + 2)y = 14¢**, we already
know (D + 5)(D + 2)(c1e7° + ce~ %) = 0, so we need to verify

(D + 5)(D + 2)(Ape*) = 14e*.

(D 4 5)(D + 2)(Ape*) = (D* + 7D + 10)(Age®*) = 4A0e* + 14A0e* + 10A0e** = 14>

= 284pe* = 14¢*
1
= AO - 5
Therefore, the general solution to the initial nonhomogeneous ODE is

2x

_ _ e
c1e Sz + coe 2z + 7
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The trick in this solution is to find A(D) because thanks to A(D) we could achieve the
particular solution. This function is called annihilator of /'. And this whole technique is
called “the method of undetermined coefficients”.

Remark: Note that annihilators satisfies the equation A(D)F(z) = 0. Therefore, F'(x)
canbe c- e, ¢ - e* cos(bx), ¢ - e** sin(bx), or sum of these. So the annihilator method can
be used for such cases. And we have the annihilators for all cases:

1.

A(D) = (D — a)**! annihilates each of

and their linear combinations.

A(D) = (D?* — 2aD + a? + b*)*! annihilates each of

k

e cosbx, e cosbr, ..., x"e" cos b,

k

e’ sinbx, re* sinbx, ..., x" e sin bz,

and their linear combinations.

. The linear combinations of first type and second type functions are annihilated by

the product of individual annihilators.

Examples.

1.

F(z) = 5¢73 is annihilated by A(D) = (D + 3).
Indeed, (D + 3)(5¢73%) = (5e73%) + 3(5e™3%) = —15e73* 4 15e73* = 0.

F(z) = 2e* — 3.

2¢” is annihilated by (D — 1). —3z = —3z¢€” is annihilated by (D — 0)? = D?. Thus,
the annihilator of F(z) is D*(D — 1) = D? — D?. Indeed,

(D? — D?)(2¢" — 37) = (2¢" — 3z)" — (2" — 3x)" = 2% — 2" = 0.

F(z) = 23"z + 5sin 4.

23’ is annihilated by (D — 7)*. 5sindz = 5¢% sin 4z is annihilated by (D? + 16).
Thus, the annihilator of F(z) is (D? 4+ 16)(D — 7)*.

F(z) = 4e~**sin z is annihilated by
(D* —2(=2)D + (=2)* +1*)' = D* +4D + 5.
Exercise. Verify (D* + 4D + 5)(F(z)) = 0.

F(z) = (1 - 3z)e'® 4 22% = ' — 3ze'® 4 222
e'” — 3ze’® is annihilated by (D — 4)? and 222 is annihilated by D?, so F(z) is anni-
hilated by D?*(D — 4)2.
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6. F(z) = e"(x — 2sinbz) + 3x — 2%e " * cosx

e ze*” is annihilated by (D — 4)2.

e —2¢%sin 5z is annihilated by D? — 8D + 41.

e 3z is annihilated by D?.

e —r?e * cosx is annihilated by (D? + 4D + 5)3.

So F'(z) is annihilated by
(D —4)*(D? — 8D + 41)D*(D* 4 4D + 5)%.
Example. Find the general solution to
D(D + 3)y = 5x + xe”.
First, the general solution to D(D + 3)y = 0 is
c1 + e,

The annihilator of 5z + ze” is D*(D — 1)2. Now, we have the new homogeneous ODE

D*(D —1)’D(D +3)y = D*(D — 1)*(D + 3)y = 0.
Its general solution is

e 4 e + Agr + A2 + Age® + Agze®.
Therefore, we expect to have
D(D + 3)(cy + coe ™ + Agw + Aya® + Age” + Azxe®”) = 5z + xe”,

namely, (since D(D + 3)(c; + ce™3%) = 0)

D(D + 3)(Agz + Ay2® + Age” + Azxe®) = 5x + ze”.

We have
D(D + 3)(Apx + Ayz® + Age® + Azze®)
= (Agz + Ajr? + Age” + Asze®)” + 3(Agz + Ajz® 4 Age” + Azze®)
= (2141 —|— (A2 —|— 2143)61E + Ag[E@x) + (3140 —|— 6A11‘ —|— 3(142 + A3)€z —|— 3A3ZL‘6I>
= (3140 -+ 2A1) + <6A1)SU -+ (4142 -+ 5A3)€I -+ 41431361
Therefore, Ay = 2 and A; = 1, and so 4y = —2 and A; = —%. In other words, the

particular solution is
S5z bx?  he®  xwe®

R R T
The general solution to D(D + 3)y = 5x + xe® is then

5. bx  bx?  bet  ze”

R A T
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