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13 Week 13

13.1 General Theory for Linear ODEs

We begin with recalling a vector space and a linear transformation.

Let Ck(I) be the set of functions with k continuous derivatives.

This is indeed a subspace of Fun(I,R) because if f, g ∈ Ck(I) and c ∈ R,

(f + g)(k) = f (k) + g(k) (sum rule for derivative)
(c · f)(k) = c · f (k),

We have a particular linear transformation

D : C1(I) → C0(I)

D(f) = f ′

This is indeed a linear transformation since

(a · f + b · g)′ = a · f ′ + b · g′.

Now, recall two facts about linear transformations:

1. Composite of linear transformations is again a linear transformation.

2. Linear combinations of linear transformations is again a linear transformation.

Thus, we can define a transformation Dk : Ck(I) → C0(I) by composition Dk =
D(Dk−1). Also, if we have a1, . . . , an scalars, we can get a new linear transformation

L = Dn + a1D
n−1 + · · ·+ an−1D + an.

This transformation actually does

L(y) = Dn(y) + a1D
n−1(y) + · · ·+ an−1D(y) + any

= y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any
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Example Let L = D3 + 3D2 − D + 5x. Then we get L(y) = y′′′ + 3y′′ − y′ + 5xy. For
example, if y = cosx, then

L(cosx) = − sinx− 3 cosx+ sinx+ 5x cosx

= 2 sin x+ (5x− 3) cosx.

Now consider the general n-th order linear ODE

a0(x)y
(n) + a1(x)y

(n−1) + · · ·+ an−1(x)y
′ + an(x)y = F (x)

where a0(x) ̸= 0. We can divide the ODE by a0 and assume the ODE is in the standard
form:

y(n) + a1(x)y
(n−1) + · · ·+ an−1(x)y

′ + an(x)y = F (x).

Taking L = Dn+a1D
n−1+ · · ·+an−1D+an, the ODE can be expressed as L(y) = F (x).

During the lectures, we assume a1, . . . , an, F are continuous functions, namely, all ODEs
are regular.

The following are important notes about ODEs:

1. If F (x) = 0, we have L(y) = 0 and we call it homogeneous ODE.

2. If F (x) ̸= 0, we have L(y) = 0 and we call it nonhomogeneous ODE.

3. If we denote the set of all solutions to the homogeneous ODE by S, we get

S = {y ∈ Cn(I) | L(y) = 0} = ker(L)

This space will be called the solution space of the given ODE.

4. The solution space S has dimension n. (It is not an easy fact and needs proof,
and it is in the textbook.) Therefore, any set of n linearly independent solutions
{y1, . . . , yn}

y(n) + a1(x)y
(n−1) + · · ·+ an−1(x)y

′ + an(x)y = 0

is a basis for the solution space. So every solution is of the form

c1y1 + · · ·+ cnyn

where ci are scalars. This is called the general solution to the ODE.

5. Recall that Wronskian is a nice tool to achieve linear independence of functions.

Whenever W (f1, . . . , fn)(x0) ̸= 0 for some x0 ∈ I , we get {f1, . . . , fn} is linearly
independent. If W (f1, . . . , fn)(x) = 0 for all x ∈ I , the tool is inconclusive.

However, if these functions f1, . . . , fn are solutions to an ODE, the Wronskian method
works also for dependency.
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Theorem 13.1. Let y1, . . . , yn be solutions to the regular nth order ODE L(y) = 0 on an
interval I . Let W (y1, . . . , yn)(x) denote their Wronskian. If W (y1, . . . , yn)(x0) = 0 at some
point in I , then {y1, . . . , yn} is linearly dependent.

Proof. Omitted.

Zero or nonzero Wronskian on an interval I completely characterizes whether
solutions to L(y) = 0 are linearly dependent or linearly independent on I .

6. Using the solutions to the homogeneous ODE L(y) = 0, we can achieve the solutions
to the nonhomogeneous ODE L(y) = F (x).

Theorem 13.2. Let {y1, . . . , yn} be a linearly independent set of solutions to L(y) = 0 on
an interval I . Let yp be any particular solution to L(y) = F (x). Then every solution to
L(y) = F (x) on I is of the form

y = c1y1 + · · ·+ cnyn + yp

for arbitrary constants c1, . . . , cn.

Proof. Omitted.

Summary: For equations

y(n) + a0(x)y
(n−1) + · · ·+ an−1(x)y

′ + an(x)y = F (x),

we write it as L(y) = F (x) where

L = Dn + a0D
n−1 + · · ·+ an−1D + an.

We will first solve L(y) = 0 and it gives the solutions for homogeneous ODEs. Using
particular solutions to L(y) = F (x), we achieve all solutions for nonhomogeneous
ODEs.

Examples.

1. Consider
y′′′ + x2y′ − (sinx)y + exy = x3. (1)

Then define
L = D3 + x2D − sinxD + ex.

So (1) can be written as
L(y) = x3,

We can solve L(y) = 0 first, and find a particular solution to L(y) = x3, Then these
together give the general solution to (1).
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2. Consider the ODE
y′′ − 16y = 0.

Determine which of the following sets of vectors is a basis for its solution space.

S1 = {e4x, e−4x}, S2 = {e2x, e4x, e−4x}, S3 = {e4x, e2x}

S4 = {e4x, e−4x}, S5 = {e4x, 7e4x}
Answer. Since the ODE is of order 2, the solution space is 2-dimensional. So S1, S4,
S5 can be a basis.

S3 = {e4x, e2x}

First, we need to check if e4x, e2x are solutions.

(e4x)′′ − 16(e4x) = 16e4x − 16e4x = 0 ✓

(e2x)′′ − 16(e2x) = 4e2x − 16e2x ̸= 0 ×

So S3 cannot be a basis.

S4 = {e4x, e−4x}

e4x is already a solution,

(e−4x)′′ − 16(e−4x) = (−4)(−4)e−4x − 16e−4x = 0 ✓

Also

W (e4x, e−4x) = det

(
e4x e−4x

4e4x −4e−4x

)
= −8e8x ̸= 0 if x = 0,

So S4 is independent, and thus a basis for the solution space.

S5 = {e4x,7e4x}

Since 7e4x is a scalar multiple of e4x, S5 is dependent. So S5 cannot be a basis.

3. Determine two linearly independent solutions to the y′′ − 7y′ + 10y = 0 of the form
y(x) = erx and determine the general solution

Answer.

(erx)′′ − 7(erx)′ + 10(erx) = 0

r2erx − 7rerx + 10erx = 0

erx(r2 − 7r + 10) = 0.
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Since erx ̸= 0, we must have r2 − 7r + 10 = 0. Since r2 − 7r + 10 = (r− 5)(r− 2), we
get r = 5, 2. By Wronskian, e5x and e2x are independent. So the general solutions to
y′′ − 7y′ − 10y = 0 are of the form c1e

5x + c2e
2x.

4. Determine two linearly independent solutions to the x2y′′+3xy′−8y = 0 of the form
y(x) = xr and determine the general solution on (0,∞).

Answer.

x2(xr)′′ + 3x(xr)′ − 8xr = 0

r(r − 1)xr + 3rxr−1 − 8xr = 0

(r(r − 1) + 3r − 8)xr = 0

(r2 + 2r − 8)xr = 0

So r2 + 2r− 8 = 0 which means (r+ 4)(r− 2) = 0. Thus x−4 and x2 are solutions for
the ODE. Use the Wronskian

W (x−4, x2)(x) = det

(
x−4 x2

−4x−5 2x

)
= 2x−3 + 4x−3 = 6x−3.

If x ̸= 0, then W (x−4, x2)(x) ̸= 0. So x−4 and x2 are independent. The general
solution to x2y′′ + 3xy′ − 8y = 0 is of the form

c1x
−4 + c2x

2.

5. Determine a particular solution to the given differential equation of the form yp(x) =
A0 + A1x+ A2x

2. Also find the general solution to the differential equation

y′′ + y′ − 2y = 4x2 + 5.

Answer. Suppose yp(x) gives a solution, so we must have

(yp)
′′ + (yp)

′ − 2(yp) = 4x2 + 5

(2A2) + (A1 + 2A2x)− 2(A0 + A1x+ A2x
2) = 4x2 + 5

−2A2x
2 + (2A2 − 2A1)x+ (2A1 + 2A2 − 2A0) = 4x2 + 5

Therefore A2 = −2, A1 = −2, A0 = −11
2

. For general solution, first we solve

y′′ + y′ − 2y = 0.

Note, when all coefficients are constants, the solutions are of the form erx.

(erx)′′ + (erx)′ − 2(erx) = 0

r2erx + rerx − 2erx = 0

(r2 + r − 2)erx = 0
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⇒ r2 + r − 1 = (r + 2)(r − 1) = 0, namely r = −2, 1.

By Wronskian, it is easy to see that e−2x and ex are independent.

⇒ the general solution to y′′ + y′ − 2y = 0 is of the form c1e
−2x + c2e

x.

⇒ the general solution to y′′ + y′ − 2y = 4x+ 5 is of the form

c1e
−2x + c2e

x − 11

2
− 2x− 2x2.

13.2 Constant Coefficient Homogeneous Linear ODEs

In the next few sections, we develop methods for solving linear equations of order n
that have only constant coefficients. Namely, our focus is the equation of the form

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = F (x)

where a1, . . . , an are constants (not functions). First, we’ll learn how to solve it when
F (x) = 0. Second, we’ll learn how to solve it for arbitrary F (x).

We begin with writing such an homogeneous ODE using linear transformation. This
is given by

P(D)y = 0

where P(D) = Dn + a1D
n−1 + · · · + an−1D + an. This is called polynomial differential

operator, and we can write this as a real polynomial

P(r) = rn + a1r
n−1 + · · ·+ an−1r + an.

We will see that solving

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = 0

will be the same as solving P(r) = 0.

Since any polynomial can be expressed as a product of linear factors

P(r) = (r − r1)
m1(r − r2)

m2 · · · (r − rk)
mk ,

we first focus on these factors. Namely, if we have the differential equation

(D − r1)
m1(D − r2)

m2 · · · (D − rk)
mky = 0,

we will first learn how to solve
(D − ri)

miy = 0.

Lemma 13.3. Consider the differential operator (D − a)m, where m is a positive integer and a is
a real or complex number. For any u ∈ Cm(I), we get

(D − a)m(eaxu) = eaxDm(u).
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Proof. If m = 1,

(D − a)(eaxu) = D(eaxu)− a(eaxu) = eaxD(u) + aeaxu− aeaxu = eaxD(u),

By induction, we can repeat the process for higher m.

Theorem 13.4. The differential equation (D − a)my = 0 where m is a positive integer and a
is a real or complex number, has the following m solutions that are linearly independent on any
interval:

eax, xeax, . . . , xm−1eax.

Proof. Using previous lemma

(D − a)m(xkeax) = eaxDm(xk) = eax · 0 = 0.

Indeed, since m > k, after taking m derivatives of xk we get 0. Therefore xkeax is a solution
for any k = 0, . . . ,m− 1. Also, they are independent since

c1e
ax + c2xe

ax + · · ·+ cmx
m−1eax = 0

implies (after dividing both sides with eax)

c1 + c2x+ · · ·+ cmx
m−1 = 0.

Since {1, x, . . . , xm−1} is independent, we get c1 = c2 = · · · = cm = 0.

Using this theorem, we obtain the general solutions to the differential equation

(D − r1)
m1(D − r2)

m2 · · · (D − rk)
mky = 0.

1. For (D − r)m where r is real, we have independent solutions

erx, xerx, . . . , xm−1erx.

2. For (D − r)m where r = a+ ib, we have independent solutions

e(a+ib)x, xe(a+ib)x, . . . , xme(a+ib)x.

Using the fact e(a+ib)x = eax(cos bx+ i sin bx), observe that we have solutions

xkeax(cos bx+ i sin bx) = w1

and
xkeax(cos bx− i sin bx) = w2.

Then their linear combinations, as below, give other solutions:

1

2
(w1 + w2) = xkeax cos bx
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and
1

2i
(w1 − w2) = xkeax sin bx.

Therefore, we achieve 2m solutions,

eax cos bx, xeax cos bx, . . . , xm−1eax cos bx,

eax sin bx, xeax sin bx, . . . , xm−1eax sin bx.

3. From the previous two parts, we achieve n linearly independent solutions. There-
fore, if y1, . . . , yn are those solutions, the general solution to the equation is given
by

y = c1y1(x) + c2y2(x) + · · ·+ cnyn(x).

Examples.

1. Determine the general solution to the equation

y′′ − y′ − 2y = 0.

Solution. Its differential operator is

D2 −D − 2 = (D − 2)(D + 1),

So the roots are 2 and −1. Therefore, the general solution to the equation is

y(x) = c1e
2x + c2e

−x.

2. Determine the general solution to the equation

(D + 2)2y = 0.

Solution. The only root is −2. So the general solution is

y(x) = c1e
−2x + c2xe

−2x.

3. Determine the general solution to the equation

y′′′ − y′′ + y′ − y = 0.

Solution. Its differential operator is

D3 −D2 +D − 1 = 0.

It can be factorized as
(D − 1)(D2 + 1).

The roots are 1 and ±i. Therefore, the general solution is

y(x) = c1e
x + c2e

0x cosx+ c3e
0x sinx = c1e

x + c2 cosx+ c3 sinx.
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4. Determine the general solution to the equation

(D2 + 3)(D + 1)2y = 0.

Solution. The roots are ±
√
3i and −1. So the general solution is

y(x) = c1e
−x + c2xe

−x + c3 cos(
√
3x) + c4 sin(

√
3x).

5. Determine the general solution to the equation

(D2 + 2D + 10)2y = 0.

Solution. The roots are −1± 3i. Therefore, the general solution is

y(x) = c1e
−x cos(3x) + c2e

−x sin(3x) + c3xe
−x cos(3x) + c4xe

−x sin(3x).

6. Determine the general solution to the equation

y(4) − 16y = 0.

Solution. Its differential operator is D4 − 16. It can be factorized as

(D − 2)(D + 2)(D2 + 4),

and its roots are 2,−2,±2i. Thus, the general solution is

y(x) = c1e
2x + c2e

−2x + c3 cos(2x) + c4 sin(2x).

7. Solve the IVP:
y′′ − 8y′ + 16y = 0, y(0) = 2, y′(0) = 7.

Solution. Its differential operator is

D2 − 8D + 16 = (D − 4)2.

So the only root is 4. The general solution is

y(x) = c1e
4x + c2xe

4x.

Then y′(x) = 4c1e
4x + c2e

4x + 4c2xe
4x. Using the initial values and set

y(0) = c1 = 2, y′(0) = 4c1 + c2 = 7.

Thus, c1 = 2 and c2 = −1. So the particular solution is

yp(x) = 2e4x − xe4x.
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13.3 The Method of Undetermined Coefficients: Annihilators

In the previous section, we focused on solving constant coefficient homogeneous ODE
P (D)y = 0. Now we will provide the solution for nonhomogeneous case. Recall the
solutions to P (D)y = F (x) are of the form

y(x) = yc(x) + yp(x)

where yc(x) is the general solution to P (D)y = 0 and yp(x) is a particular solution to
P (D)y = F (x). Thus, our next step is considering how we can find yp(x).

Before giving the whole process, let’s do an example.

Example:
(D + 5)(D + 2)y = 14e2x.

Step (1) Solve (D + 5)(D + 2)y = 0. From the previous section, we know the general
solution is of the form

c1e
−5x + c2e

−2x,

Step (2) Find a particular solution to (D + 5)(D + 2)y = 14e2x.

Suppose we have another operator A(D) such that A(D)(14e2x) = 0. Because then we
would have

A(D)(D + 5)(D + 2)y = A(D)(14e2x) = 0,

so this would be another homogeneous equation.

It is easy to see that A(D) = D − 2. Indeed

(D − 2)(14e2x) = (14e2x)′ − 2(14e2x) = 28e2x − 28e2x = 0.

Now the general solution for (D − 2)(D + 5)(D + 2) is of the form

c1e
−5x + c2e

−2x + A0e
2x.

The solution must contain a particular solution to (D + 5)(D + 2)y = 14e2x, we already
know (D + 5)(D + 2)(c1e

−5x + c2e
−2x) = 0, so we need to verify

(D + 5)(D + 2)(A0e
2x) = 14e2x.

(D + 5)(D + 2)(A0e
2x) = (D2 + 7D + 10)(A0e

2x) = 4A0e
2x + 14A0e

2x + 10A0e
2x = 14e2x

⇒ 28A0e
2x = 14e2x

⇒ A0 =
1

2
.

Therefore, the general solution to the initial nonhomogeneous ODE is

c1e
−5x + c2e

−2x +
e2x

2
.
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The trick in this solution is to find A(D) because thanks to A(D) we could achieve the
particular solution. This function is called annihilator of F . And this whole technique is
called “the method of undetermined coefficients”.

Remark: Note that annihilators satisfies the equation A(D)F (x) = 0. Therefore, F (x)
can be c · eax, c · eax cos(bx), c · eax sin(bx), or sum of these. So the annihilator method can
be used for such cases. And we have the annihilators for all cases:

1. A(D) = (D − a)k+1 annihilates each of

eax, xeax, . . . , xkeax,

and their linear combinations.

2. A(D) = (D2 − 2aD + a2 + b2)k+1 annihilates each of

eax cos bx, xeax cos bx, . . . , xkeax cos bx,

eax sin bx, xeax sin bx, . . . , xkeax sin bx,

and their linear combinations.

3. The linear combinations of first type and second type functions are annihilated by
the product of individual annihilators.

Examples.

1. F (x) = 5e−3x is annihilated by A(D) = (D + 3).

Indeed, (D + 3)(5e−3x) = (5e−3x)′ + 3(5e−3x) = −15e−3x + 15e−3x = 0.

2. F (x) = 2ex − 3x.

2ex is annihilated by (D − 1). −3x = −3xe0 is annihilated by (D − 0)2 = D2. Thus,
the annihilator of F (x) is D2(D − 1) = D3 −D2. Indeed,

(D3 −D2)(2ex − 3x) = (2ex − 3x)′′′ − (2ex − 3x)′′ = 2ex − 2ex = 0.

3. F (x) = x3e7x+ 5 sin 4x.

x3e7x is annihilated by (D − 7)4. 5 sin 4x = 5e0x sin 4x is annihilated by (D2 + 16).
Thus, the annihilator of F (x) is (D2 + 16)(D − 7)4.

4. F (x) = 4e−2x sinx is annihilated by

(D2 − 2(−2)D + (−2)2 + 12)1 = D2 + 4D + 5.

Exercise. Verify (D2 + 4D + 5)(F (x)) = 0.

5. F (x) = (1− 3x)e4x + 2x2 = e4x − 3xe4x + 2x2

e4x − 3xe4x is annihilated by (D − 4)2 and 2x2 is annihilated by D3, so F (x) is anni-
hilated by D3(D − 4)2.
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6. F (x) = e4x(x− 2 sin 5x) + 3x− x2e−2x cosx

• xe4x is annihilated by (D − 4)2.

• −2e4x sin 5x is annihilated by D2 − 8D + 41.

• 3x is annihilated by D2.

• −x2e−2x cosx is annihilated by (D2 + 4D + 5)3.

So F (x) is annihilated by

(D − 4)2(D2 − 8D + 41)D2(D2 + 4D + 5)3.

Example. Find the general solution to

D(D + 3)y = 5x+ xex.

First, the general solution to D(D + 3)y = 0 is

c1 + c2e
−3x.

The annihilator of 5x+ xex is D2(D − 1)2. Now, we have the new homogeneous ODE

D2(D − 1)2D(D + 3)y = D3(D − 1)2(D + 3)y = 0.

Its general solution is

c1 + c2e
−3x + A0x+ A1x

2 + A2e
x + A3xe

x.

Therefore, we expect to have

D(D + 3)(c1 + c2e
−3x + A0x+ A1x

2 + A2e
x + A3xe

x) = 5x+ xex,

namely, (since D(D + 3)(c1 + c2e
−3x) = 0)

D(D + 3)(A0x+ A1x
2 + A2e

x + A3xe
x) = 5x+ xex.

We have

D(D + 3)(A0x+ A1x
2 + A2e

x + A3xe
x)

= (A0x+ A1x
2 + A2e

x + A3xe
x)′′ + 3(A0x+ A1x

2 + A2e
x + A3xe

x)′

= (2A1 + (A2 + 2A3)e
x + A3xe

x) + (3A0 + 6A1x+ 3(A2 + A3)e
x + 3A3xe

x)

= (3A0 + 2A1) + (6A1)x+ (4A2 + 5A3)e
x + 4A3xe

x

Therefore, A1 = 5
6

and A3 = 1
4
, and so A0 = −5

9
and A2 = − 5

16
. In other words, the

particular solution is

−5x

9
+

5x2

6
− 5ex

16
+

xex

4
.

The general solution to D(D + 3)y = 5x+ xex is then

c1 + c2e
−3x − 5x

9
+

5x2

6
− 5ex

16
+

xex

4
.
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