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14 Week 14 & 15

More ODE Examples

1. Solve IVP
xy′ − 2y = x4 sinx, y

(π
2

)
= 0

Answer: First, write it as

y′ − 2

x
y = x3 sinx.

Integrating factor I(x) is

I(x) = e
∫
− 2

x
dx = e−2 lnx = elnx−2

= x−2.

Multiplying through by x−2, we get

x−2(y′ − 2

x
y) = x−2(x3 sinx)

Hence,
(yx−2)′ = x sinx

Integrating both sides with respect to x, we get

yx−2 =

∫
x sinx dx+ C

Using integration by parts, ∫
u dv = uv −

∫
v du,

let u = x and dv = sinx dx, then du = dx and v = − cosx, we have∫
x sinx dx = −x cosx+

∫
cosx dx = −x cosx+ sinx+ C
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So the general solution is

y = −x3 cosx+ x2 sinx+ Cx2

Using the initial condition y
(
π
2

)
= 0:

0 = y
(π
2

)
= 0 +

π2

4
+ C

π2

4
,

we find that C = −1.

Thus the solution of the IVP is

y = −x3 cosx+ x2 sinx− x2

2. Find the general solution to

y′ +
2x

x2 − 1
y =

x

x2 − 1
.

Answer:
I(x) = e

∫
2x

x2−1
dx

= elnu = u = x2 − 1,

where we let u = x2 − 1 and du = 2x dx.

Multiplying the differential equation by the integrating factor, we get

(x2 − 1)y′ +
2x

x2 − 1
y = (x2 − 1)

(
x

x2 − 1

)
This simplifies to (

y(x2 − 1)
)′
= x.

Integrating both sides, we find

y(x2 − 1) =

∫
x dx+ C =

x2

2
+ C,

Hence, the general solution is

y =
x2

2(x2 − 1)
+

C

x2 − 1
.

3. Find the general solution to

y′ +
y

x lnx
= x for x > 1.

Answer:
I(x) = e

∫
1

x ln x
dx = eln lnu = lnu = lnx,
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where we let u = lnx and thus du = 1
x
dx.

Multiplying the differential equation by lnx, we get

lnx
(
y′ +

y

x lnx

)
= x lnx.

Therefore,
(y lnx)′ = x lnx.

Integrating both sides, we get

y lnx =

∫
x lnx dx+ C.

Using integration by parts, where u = ln x and dv = x dx, then du = dx
x

and v = x2

2
,

we find ∫
x lnx dx =

x2 lnx

2
−
∫

x2

2
· dx
x

=
x2 lnx

2
− x2

4
+ C.

Finally, the general solution is

y =
x2

2
− x2

4 lnx
+

C

lnx
.

4. Determine the general solution to

y′′ + 2y′ + 5y = 3 sin 2x,

namely,
(D2 + 2D + 5)y = 3 sin 2x.

Step 1: Solve the homogeneous equation

(D2 + 2D + 5)y = 0.

The roots are
−2±

√
4− 20

2
= −1± 2i.

The general solution is
C1e

−x cos 2x+ C2e
−x sin 2x.

Step 2: The annihilator of 3 sin 2x is (D2 + 4). The new ODE is

(D2 + 4)(D2 + 2D + 5)y = 0.

So the general solution is

C1e
−x cos 2x+ C2e

−x sin 2x+ A0 cos 2x+ A1 sin 2x.
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We have
(D2 + 2D + 5)(A0 cos 2x+ A1 sin 2x) = 3 sin 2x

which gives
(A0 + 4A1) cos 2x+ (A1 − 4A0) sin 2x = 3 sin 2x

Solving the system
A0 + 4A1 = 0

A1 − 4A0 = 3,

we find
A1 =

3

17
, A0 = −12

17
.

So the solution is

C1e
−x cos 2x+ C2e

−x sin 2x− 12

17
cos 2x+

3

17
sin 2x.

14.1 First-Order Systems

Consider the system of linear differential equations:

x′
1 = a11x1 + · · ·+ a1nxn + b1

x′
2 = −a21x1 + · · · − a2nxn + b2
...

x′
n = an1x1 + · · ·+ annxn + bn,

where x1, . . . , xn; aij; bi are all functions with variable t on an interval I . This is called
a first-order system If b′is are all 0, then the system is homogeneous. Otherwise, it is
nonhomogeneous.

Remarks. Highest derivative is the first derivative. Right sides of equations do not
involve any derivative.

Example. Find the general solution to the system

x′
1 = 2x1 + x2,

x′
2 = 2x1 + 3x2.

The system can be written as

x′
1 − 2x1 − x2 = 0 ⇒ (D − 2)x1 − x2 = 0,

x′
2 − 2x1 − 3x2 = 0 ⇒ −2x1 + (D − 3)x2 = 0.

Reducing the matrix via A12(D − 3)

A =

(
D − 2 −1
−2 D − 3

)
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we have (
D − 2 −1

(D − 2)(D − 3)− 2 0

)
.

The last row means

(D2 − 5D + 4)x1 = (D − 4)(D − 1)x1 = 0.

So the general solution is
x1 = C1e

4x + C2e
x.

Since x2 = x′
1 − 2x1, we get

x2 = 4C1e
4x + C2e

x − 2C1e
4x − 2C2e

x,

resulting in
x2 = 2C1e

4x − C2e
2x.

If we also have initial values, like x1(0) = 0 and x2(0) = 3, we get a system of equa-
tions:

C1 + C2 = 0,

2C1 − C2 = 3.

Solving this, we find C1 = 1 and C2 = −1, and the particular solution is

x1 = e4x − ex,

x2 = 2e4x + ex.

Remark. If we have a system involving higher derivatives, we can still rewrite it as a
first-order system.

1.

x′′ − ty = cos t,

y′′ − x′ + x = et.

Let x1 = x, x2 = y, x3 = y′. Then we get

x′
1 = 0x1 + tx2 + 0x3 + cos t = tx2 + cos t,

x′
2 = 0x1 + 0x2 + x3 + 0 = x3,

x′
3 = tx1 + cos t− x1 + 0x3 + et = −x1 + tx1 + (et + cos t).

2.

x′′ − 3y′ + x = sin t,

y′′ − tx′ − ety = t2.
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Let x1 = x, x2 = x′, x3 = y, x4 = y′. Then we get

x′
1 = x2,

x′
2 = 3x4 − x1 + sin t,

x′
3 = x4,

x′
4 = tx2 + etx3 + t2.

Example. Solve the given nonhomogeneous system

x′
1 = x1 + x2 + 5e4t,

x′
2 = 2x1 + x2.

This leads to

(D − 1)x1 − 2x2 = 5e4t,

−2x1 + (D − 1)x2 = 0.

Apply A12(
D−1
2

) and get (
(D − 1)2

2
− 2

)
x1 =

(D − 1)

2
5e4t

namely,
(D + 1)(D − 3)x1 = 15e4t.

The solution for x1 is then
x1 = C1e

3t + C2e
t + 3e4t,

and for x2,
x2 = x′

1 − x1 − 5e4t = 3C1e
3t − C2e

t + 12e4t.

Hence,
x2 = C1e

3t − C2e
t + 2e4t.

14.2 Vector Formulation of First-Order System

Consider the system

x′
1 = a11(t)x1 + · · ·+ a1n(t)xn + b1(t),

...
x′
n = an1(t)x1 + · · ·+ ann(t)xn + bn(t).

Let x(t) =

x1(t)
...

xn(t)

, x′(t) =

x′
1(t)
...

x′
n(t)

 , and define A(t) =
[
aij(t)

]
, b(t) =

b1(t)
...

bn(t)

 .
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The system can be written as

x′(t) = A(t)x(t) + b(t).

Let Vn(I) be the set of all column n-vector functions defined on an interval I . Vn(I) is
indeed a vector space, but not finite dimensional. Now, to determine the independence
of vector functions, we’ll generalize the Wronskian definition. If x1(t), . . . ,xn(t) ∈ V (I),
then the Wronskian of x1, . . . ,xn is defined as

W (x1, . . . ,xn)(t) = det
[
x1(t) · · · xn(t)

]
.

Again, if W (x1, . . . ,xn)(a) ̸= 0 at some a ∈ I , we have {x1, . . . ,xn} is linearly inde-
pendent.

Example. 1. Let x1(t) =

(
cos(t)
sin(t)

)
and x2(t) =

(
cot(t)
tan(t)

)
be vector functions. They are

independent on (0, π
2
) because

W (x1,x2)(t) = det

[
cos(t) cot(t)
sin(t) tan(t)

]
= sin(t)− cos(t),

which is not zero if t = π
3
.

2. The vector functions

x1(t) =

1
t
t2

 , x2(t) =

1
t2

t4

 , x3(t) =

1
t3

t5


are independent on (−∞,∞).

The Wronskian of x1,x2,x3 is

W (x1,x2,x3)(t) = det

1 1 1
t t2 t3

t2 t4 t5

 = −t6 + 2t5 − t4.

At t = 2, this gives us

det = −64 + 64− 16 = −16 ̸= 0.

3. Consider another vector function

x1(t) =

sin2 t
cos2 t
2

 , x2(t) =

2 cos2 t
2 sin2 t

1

 , x3(t) =

2
2
5

 .

They are dependent on (−∞,∞) because

2x1(t) + x2(t) =

2 sin2 t+ 2 cos2 t
2 cos2 t+ 2 sin2 t

4 + 1

 =

2
2
5

 = x3(t).

Remark. We have two obvious linear transformations:
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1. T : Vn(I) → Vn(I)
T (x(t)) = A(t)x(t)

where A(t) is an n× n matrix function.

2. D : Vn(I) → Vn(I)
D(x(t)) = x′(t)

So we can express
x′(t) = A(t)x(t) + b(t)

as
(D − A)x(t) = b(t)

where D is the first derivative, A is an n×n matrix function. When b(t) = 0, the solutions
x(t) will be in Ker(D − A). In any case, we have b(t) ∈ Ran(D − A).

Our new initial value problem will be like

Solve IVP

{
x′(t) = A(t)x(t) + b(t)

x(t0) = x0.

When A and b are continuous functions, we always have a solution (Picard’s Theorem
again).

Remark. Just as the solution set to a single ODE, the set of solutions to

x′(t) = A(t)x(t)

is a subspace of Vn(I) and it has dimension n.

Therefore, if {x1,x2, . . . ,xn} is any set of n linearly independent solutions to x′(t) =
A(t)x(t), then general solutions to it can be written as

c1x1 + . . .+ cnxn

where c1, . . . , cn ∈ R.

Remark. Using the generalized Wronskian, we can have a test for dependency in the
case of solutions to x′ = Ax.

Theorem 14.1. If {x1, . . . ,xn} is a set of solutions to x′ = Ax, then . . .

1) If W (x1, . . . ,xn)(t) ̸= 0 for some t ∈ I , then the set is independent.

2) If W (x1, . . . ,xn)(t) = 0 for some t ∈ I , then the set is dependent.

Example. Let

x1(t) =

[
t sin t
cos t

]
, x2(t) =

[
−t cos t
sin t

]
,
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these are two solutions to x′(t) = A(t)x(t) where A =

[
1/t t
−1/t 0

]
. Indeed,

A(t)x1(t) =

[
1/t t
−1/t 0

] [
t sin t
cos t

]
=

[
sin t+ t cos t

− sin t

]
= x′

1(t)

A(t)x2(t) =

[
1/t t
−1/t 0

] [
−t cos t
sin t

]
=

[
− cos t+ t sin t

cos t

]
= x′

2(t)

Also, x1 and x2 are independent. Indeed,

W (x1,x2)(t) = det

[
t sin t −t sin t
cos t sin t

]
= t(sin2 t+ cos2 t) = t

for t ̸= 0, det ̸= 0.

Remark. Just as we solve non-homogeneous ODEs, when we have non-homogeneous
first-order systems, the general solutions to

x′(t) = A(t)x(t) + b(t)

is of the form
x(t) = c1x1(t) + · · ·+ cnxn(t) + xp(t)

where x1, . . . ,xn are independent solutions to x′(t) = A(t)x(t) and xp is a particular solu-
tion for b(t).

14.3 First-Order Systems with Nondefective Coefficient Matrices

Recall the simple constant coefficient homogeneous ODE

(D − λI)y = 0.

We know y = ceλt. Instead of single y, consider x =

x1(t)
...

xn(t)

 vector function. Thus

(D − λI)x = 0

means (D − λI)x1
...

(D − λI)xn

 =

0...
0

 .

Using the same approach for each row, we getx1
...
xn

 =

a1e
λt

...
ane

λt

 = eλt

a1...
an

 = eλtv,
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where v is the constant vector. It means the vectors are of the form eλtv where v is a
constant vector and is a solution for (D − λI)x = 0, namely x′ = λx.

A natural question arises: What if λ is an eigenvalue of A and v is the corresponding
eigenvector?

Indeed, if the first-order system
x′ = Ax

and λ, v as before, then eλtv is still a solution:

Aeλtv = eλt(Av) = eλtλv = λeλtv = (eλtv)′.

So we have the following result:

Theorem 14.2. Let A be an n × n matrix of real constants, and let λ be an eigenvalue of A with
corresponding eigenvector v, then eλtv is a solution to x′ = Ax on any interval.

Example. Find a solution to

x′ =


2 1 0 0
1 2 0 0
0 1 1 3
0 2 3 1

x.

where the characteristic polynomial of A is

p(λ) = (λ− 1)(λ+ 2)(λ− 3)(λ− 4).

Solution: λ = 1 is an eigenvalue of A, and


1 1 0 0
1 1 0 0
0 1 0 3
0 2 3 0

v = v has a solution v =


−y
y
2
3
y

1
3
y

 . For example,


−3
3
−2
−1

 is an eigenvector. So x =


−3et

3et

−2et

−et

 is a solution.

Remark: If A has no n independent eigenvectors, namely, A is defective, then there
are not enough eigenvectors to get n independent solutions. For nondefective we have all
solutions!

Theorem 14.3. Let A be an n× n nondefective matrix with independent eigenvectors v1, . . . ,vn

corresponding to λ1, . . . , λn (not necessarily distinct). Then the set of vector functions {x1, . . . ,xn}
where

xi = eλitvi, i = 1, . . . , n

are linearly independent solutions to x′ = Ax. So any solution is given by c1x1 + . . .+ cnxn.
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Proof. We already know xi’s are solutions. It’s enough to check independency.

W (x1, . . . ,xn)(t) = det
[
eλ1tv1 eλ2tv2 · · · eλntvn

]
= eλ1t det

[
v1 e(λ2−λ1)tv2 · · · e(λn−λ1)tvn

]
. . .

= e(λ1+λ2+···+λn)t det
[
v1 · · · vn

]
̸= 0

since v1, . . . ,vn is independent and eλ1t ̸= 0 always.

Example. Solve x′ =

2 0 0
0 5 −7
0 2 −4

x, where the characteristic polynomial of A is

p(λ) = (λ− 2)(λ+ 2)(λ− 3).

For λ1 = 2: 0 0 0
0 3 −7
0 2 −6

v = 0 =⇒ v =

x0
0

 ,

For λ2 = −2: 4 0 0
0 7 −7
0 2 −2

v = 0 =⇒ v =

0y
y

 ,

For λ3 = 3: −1 0 0
0 2 −7
0 2 −7

v = 0 =⇒ v =

 0
7z
2z

 .

The solution is of the form

c1e
2t

10
0

+ c2e
−2t

01
1

+ c3e
3t

07
2

 .

Note that A may have complex eigenvalues and complex eigenvectors. Suppose λ =
a+ ib is a complex eigenvalue and v = r+ is is a complex eigenvector, where r and s are
real vectors. Then, still x = eλtv is a solution.

We can expand eλtv to get real-valued vectors:

e(a+ib)tv = eat(cos(bt) + i sin(bt))(r+ is)

= eat(cos(bt)r− sin(bt)s) + ieat(cos(bt)s+ sin(bt)r)

= x1 + ix2

We have x1 + ix2 is a solution. Since the conjugate of v is also an eigenvector (for
a− ib), we get x1 − ix2 is also a solution. Therefore, by similar computation,

(x1 + ix2) + (x1 − ix2)

2
= x1
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and
(x1 + ix2)− (x1 − ix2)

2i
= x2

are real solutions. We can summarize the relationship between eigenvectors of A and the
solutions to x′ = Ax as follows:

1. If λ is a real eigenvalue of A and v1, . . . ,vk are corresponding independent eigen-
vectors, we have for j = 1, . . . , k

xj(t) = eλtvj

are all independent solutions to x′ = Ax.

2. If λ = a + ib is a complex eigenvalue of A and v1, . . . ,vk are corresponding eigen-
vectors where vj = rj + isj , then

eat(cos(bt)r1 − sin(bt)s1), eat(cos(bt)s1 + sin(bt)r1),

...

eat(cos(bt)rk − sin(bt)sk), eat(cos(bt)sk + sin(bt)rk)

are all independent solutions to x′ = Ax,

Example.

x′ = Ax where A =

3 0 −1
0 −3 −1
0 2 −1

 .

The characteristic polynomial of A is

p(λ) = (−λ+ 3)(λ2 + 4λ+ 5).

Solution: The eigenvalues are

λ1 = 3, λ2 = −2 + i, λ3 = −2− i.

For λ1 = 3: 0 0 −1
0 −6 −1
0 2 −4

v = 0 ⇒ v =

x0
0

 .

For λ2 = −2 + i:5− i 0 −1
0 −1− i −1
0 2 1 + i

v = 0 ⇒ v =

 5+i
26

z
−1+i

2
z

z

 =

 5
26
z

−1
2
z

z

+ i

 1
26
z

1
2
z
0

 .

12



The solutions to x′ = Ax are of the form

x = c1e
3t

10
0

+ c2e
−2t

cos t

 5
−13
26

− sin t

 1
13
0

+ c3e
−2t

cos t

 1
13
0

+ sin t

 5
−13
26

 .

Example. Consider the matrix

A =

[
0 −4
4 0

]
.

We are interested in finding the eigenvalues and eigenvectors of A and the general solu-
tion to the differential equation x′ = Ax.

The characteristic polynomial of A is:

det(λI − A) = det

[
−λ −4
4 −λ

]
= λ2 + 16.

Solving for λ, we find the eigenvalues to be λ = ±4i.

For λ = 4i, the corresponding eigenvector v is found by solving (A− 4iI)v = 0:[
−4i −4
4 −4i

]
v = 0 ⇒ v =

[
i
1

]
=

[
0
1

]
+ i

[
1
0

]
.

The general solution to the differential equation is then:

x(t) = c1

(
cos(4t)

[
0
1

]
− sin(4t)

[
1
0

])
+ c2

(
cos(4t)

[
1
0

]
+ sin(4t)

[
0
1

])
.

Example. Consider the matrix

A =

−1 0 0
1 5 −1
1 6 −2

 .

To find the eigenvalues of A, we calculate the characteristic polynomial:

det(A− λI) = det

−1− λ 0 0
1 5− λ −1
1 6 −2− λ


= (−1− λ) [(5− λ)(−2− λ) + 6]

= −(1 + λ)2(λ− 4).

This gives us the eigenvalues λ1 = −1 (with multiplicity 2) and λ2 = 4.
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For λ1 = −1, the corresponding eigenvectors are:0 0 0
1 6 −1
1 6 −1

v = 0 ⇒ v =

−6y + z
y
z

 =

−6y
y
0

+

z0
z

 .

For λ2 = 4,it gives us −5 0 0
1 1 −1
1 6 −6

v = 0 ⇒ v =

0y
y

 .

The solutions to x′ = Ax are of the form

x = c1e
−t

−6
1
0

+ c2e
−t

10
1

+ c3e
4t

01
1

 .
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