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2 Week 2

2.1 The general idea behind this week’s topics

We will build our first tool to solve a system of linear equations. Before, let us discuss
the idea behind the technique. Consider the following system:

2x+ 3y = 2

−x+ 2y = 6

You might be familiar with this from high-school algebra or pre-calculus course that we
can make the coefficients simpler to solve these equations. Now, multiply the second
equality by 2 and add the first one. Then we will have

2x+ 3y = 2

7y = 14

Now, simplify the second equality by dividing with 7, simplify the first equality by divid-
ing with 2 and get

x+
3

2
y = 1

y = 2

Then we find y = 2, and via back substitution, namely, we replace y with 2 in the first
equality, we have x+ 3 = 1 which means x = −2.

Now, consider the augmented matrices of first and last systems:[
2 3 | 2
−1 2 | 6

]
→

[
1 3

2
| 1

0 1 | 2

]
These both represent the same system, but the latter produces solutions easily. In

essence, we develop this method to the system with arbitrary size m× n. This row oper-
ations on the equations will be row operations on the augmented matrix. The resulting
matrix is called row-echelon matrix, and its more developed version will be reduced
row-echelon matrix. Considering also the back substitution technique, we have our first
tool to solve linear equations system. This is called Gauss elimination, and its develop
version is Gauss-Jordan elimination.
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2.2 Row-echelon matrices & Row operations

Definition 2.1. An m×n matrix is called a row-echelon matrix if it satisfies the following three
conditions:

1. If there are any rows consisting entirely of zeros, they are grouped together at the bottom of
the matrix.

2. The first nonzero element in any nonzero row is a 1 (called a leading 1).

3. The leading 1 of any row below the first row is to the right of the leading 1 of the row above
it.

Example. While

1 −8 −3 7
0 1 5 9
0 0 0 1

 and


1 −3 −6 5 7
0 0 1 3 5
0 0 0 1 0
0 0 0 0 0

 are row-echelon matrices,

the matrices

1 0 −1
0 1 2
0 1 −1

 and


1 0 0
0 0 0
0 1 −1
0 0 1

 are not row-echelon matrices.

Now, for any m × n matrix A, we have some methods to make A into a row-echelon
matrix. There are three operations for this task.

Definition 2.2. Elementary Row Operations:

1. Pij : Permute the ith and jth rows

2. Mi(k): Multiply every element of the ith row by a nonzero scalar k.

3. Aij(k): Add to the element of the jth row the scalar k times the elements of the ith row.

Example. Consider the system

x+ 2y − z = 4

2x− y + 3z = −6

−x+ 3y − 2z = 7

Then, its augmented matrix is  1 2 −1 | 4
2 −1 3 | −6
−1 3 −2 | 7

 .

We want to reduce it into a row-echelon matrix. First, apply A12(−2), namely, add −2
times of the first row to the second row, then we have 1 2 −1 | 4

0 −5 5 | −14
−1 3 −2 | 7

 .

2



Similarly, apply A13(1), and get 1 2 −1 | 4
0 −5 5 | −14
0 5 −3 | 11

 .

Now, apply M2(
−1
5
) and M3(

1
5
) and get1 2 −1 | 4

0 1 −1 | 14
5

0 1 −3
5

| 11
5

 .

Now, apply A23(−1) and get 1 2 −1 | 4
0 1 −1 | 14

5

0 0 2
5

| −3
5

 .

Finally, apply M3(
5
2
) and get 1 2 −1 | 4

0 1 −1 | 14
5

0 0 1 | −3
2

 .

Now, according to Definition 2.1, the last matrix is a row-echelon matrix.

Definition 2.3. Let A be an m × n matrix. Any matrix obtained from A by a finite sequence of
elementary row operations is said to be row-equivalent to A.

Example. From the previous example, we have

 1 2 −1 | 4
2 −1 3 | −6
−1 3 −2 | 7

 and

1 2 −1 | 4
0 1 −1 | 14

5

0 0 1 | −3
2


are row-equivalent matrices.

Remark. Using row operations, we can make any matrix into a row-echelon matrix.
So we have theorem about this.

Theorem 2.1. Every matrix is row-equivalent to a row-echelon matrix.

Let’s write the complete algorithm for reducing an m × n matrix A to row-echelon
form. Indeed, the algorithm itself serves as a proof of Theorem 2.1.

1. Start with an m× n matrix A. If A = 0, go to step 7.

2. Determine the leftmost nonzero column (the pivot column) and the topmost posi-
tion in this column (the pivot position).

3. Use elementary row operations to put a 1 in the pivot position.

4. Use elementary row operations to put zeros below the pivot position.
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5. If there are no more nonzero rows below the pivot position, go to step 7. Otherwise,
proceed to step 6.

6. Apply steps 2–5 to the submatrix consisting of the rows below the pivot position.

7. The matrix is now in row-echelon form.

2.3 Reduced row-echelon matrix

Definition 2.4. An m × n matrix is called a reduced row-echelon matrix if it satisfies the
following conditions:

1. It is a row-echelon matrix.

2. Any column that contains a leading 1 has zeros everywhere else.

Example. The matrix

1 3 0 0
0 0 1 0
0 0 0 1

 is a reduced row-echelon matrix.

While you may end up with different row-echelon matrices after row operations, the
reduced row-echelon form is unique. In other words, if you continue to apply
more row operations to obtain reduced row-echelon matrix, the resulting matrix will be
the unique.

Example. Continue to our previous example in row-echelon section: we have1 2 −1 | 4
0 1 −1 | 14

5

0 0 1 | −3
2

 .

In order to have reduced form, first we apply A21(−2), namely, we add −2 multiple of the
second row to the first row. It gives us1 0 1 | −8

5

0 1 −1 | 14
5

0 0 1 | −3
2

 .

Then apply A31(−1) and A32(1) and get1 0 0 | − 1
10

0 1 0 | 13
10

0 0 1 | −3
2

 .

And this is a reduced row-echelon matrix.
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2.4 Rank of a matrix

Definition 2.5. The rank of a matrix A, denoted as rank(A), is defined as the number of nonzero
rows in any row-echelon form of A.

This concept is vital in linear algebra and in determining the solution properties of lin-
ear systems. Despite the non-uniqueness of a matrix’s row-echelon form, all row-echelon
forms of A that are row-equivalent have the same number of nonzero rows. The proof is
omitted now, and it will be clear after we cover vector spaces.

Example. Let’s calculate rank(A) where A =

2 −1 3 4
1 −2 1 3
1 −5 0 5

. After applying M1(
1
2
),

A12(−1), A13(−1), A23(−3), and M2(−2
3
), respectively, we get A is row-equivalent to

1 −1
2

3
2

2
0 1 1

3
−2

3

0 0 0 0

.

Therefore, rank(A)=2.

Remark.If A is an m × n matrix, then rank(A) ≤ m and rank(A) ≤ n. This is because
the number of nonzero rows in a row-echelon form of A is equal to the number of pivots
in a row-echelon form of A, which cannot exceed the number of rows or columns of A,
since there can be at most one pivot per row and per column.

2.5 Gauss(-Jordan) elimination

The process of reducing the augmented matrix to row-echelon form and then using
back substitution to solve the equivalent system is called Gaussian elimination. The
particular case of Gaussian elimination that arises when the augmented matrix is reduced
to reduced row-echelon form is called Gauss-Jordan elimination.

Example. We continue with our main example in the note. Recall that we started with
the system

x+ 2y − z = 4

2x− y + 3z = −6

−x+ 3y − 2z = 7.

Its augmented matrix is  1 2 −1 | 4
2 −1 3 | −6
−1 3 −2 | 7

 .

We apply Gauss-Jordan elimination: First, make this a reduced row-echelon matrix. We
already have this: 1 0 0 | − 1

10

0 1 0 | 13
10

0 0 1 | −3
2

 .
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But if we make it a linear equation system again, we have:

x = − 1

10

y =
13

10

z = −3

2
.

This is exactly a solution for the system. The solution can be read off directly as (− 1
10
, 13
10
,−3

2
).

The following theorem gives a general characterization of a system of equations.

Theorem 2.2. Consider the m × n linear system Ax = b. Let r denote the rank of A and r#

denote the rank of A#. Then

1. If r < r#, the system is inconsistent. There is no solution.

2. If r = r#, the system is consistent and

(a) There exists a unique solution if and only if r# = n.

(b) There exists an infinite number of solutions if and only if r# < n.

2.5.1 Free & bound variables

In the study of linear systems, variables are classified as either bound or free. Bound
variables are those which can be expressed in terms of other variables, while free variables
are those that can take any value. This concept is fundamental in understanding the
solutions of linear systems.

Example. Consider the following system of linear equations:

x+ 2y − z = 1

3x+ 8y − 2z = 12

4x+ 10y − 3z = 15

The augmented matrix for this system is:1 2 −1 | 1
3 8 −2 | 12
4 10 −3 | 15


Applying Gaussian elimination with row operations A12(−3), A13(−4), A23(−1),M2(

1
2
) re-

spectively, the matrix becomes: 1 2 −1 | 1
0 1 1

2
| 9

2

0 0 0 | 0
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The system of equations then becomes:

x+ 2y − z = 1

y +
1

2
z =

9

2
.

Now, there are 2 equations but 3 variables. In this case, one of the variables is free, we
can parameterize it freely. Let pick z as free. While z is a free variable, x, y are bound
variables. Let assume z = t, then back substitution gives us:

y =
9− t

2
x = 2t− 8.

Therefore, for any t, we have (2t− 8, 9−t
2
, t) is a solution. It means that there are infinitely

many solutions.

Remark. You might notice that we cannot take x as a free variable in this example
because doing so does not give a way to express y and z separately. We could choose y,
but there is a convention about picking free variables:

Choose as free variables those variables that do not correspond to
a leading 1 in a row-echelon form of A# .

Example. Determine all values of the constant k for which the following system has
(a) no solution, (b) infinitely many solutions, (c) a unique solution.

x+ 2y − z = 3,

2x+ 5y + z = 7,

x+ y − k2z = −k.

Its augmented matrix is

1 2 −1 | 3
2 5 1 | 7
1 1 −k2 | −k

. After applying A12(−2), A13(−1), and A23(1),

respectively, we get 1 2 −1 | 3
0 1 4 | 1
0 0 5− k2 | 2− k

 .

Now, if k is
√
5 or −

√
5, then we would have rank(A) = 2 but rank(A#) = 3. In such

a case, there cannot be a solution by Theorem 2.2. Otherwise, observe that rank(A) =
rank(A#) = 3. By Theorem 2.2, there is a unique solution.

Special case: homogeneous systems

Recall that the m×n systems of the form Ax = 0 are called homogeneous. Since x = 0
is always a solution for such systems (this is called trivial solution), we can conclude
that a homogeneous system is always consistent. If m < n, then the system has infinitely
many solutions. This is because of that r = r# in a homogeneous system and we have
r# = r ≤ m < n, so the result follows from Theorem 2.2.
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