Linear Algebra & Differential Equations

Elif Uskuplu

If you see any mistake, please email me (euskuplu@usc.edu).

3 Week 3

3.1 Inverse of a square matrix

In classical algebra, division is considered as the inverse operation of multiplication. For example, the multiplicative inverse of 4 is $\frac{1}{4}$ and multiplying k with $\frac{1}{4}$ is the same as dividing k by 4. The same duality occurs between addition and subtraction. The additive inverse of 4 is -4, and adding k and -4 means subtraction k - 4.

We use this "inversion" idea to solve equations. If we have 4x = 12, by multiplying the equation with the *inverse of* 4, we get

$$x = 1x = \frac{1}{4}4x = \frac{1}{4}12 = 3.$$

We apply the same idea in system of linear equations. Suppose we have a system $A\mathbf{x} = \mathbf{b}$, and "somehow" we have another matrix B such that $AB = BA = I_n$ (identity matrix, namely the unit of matrix multiplication) and hence we get

$$\mathbf{x} = I_n \mathbf{x} = BA\mathbf{x} = B\mathbf{b}.$$

In other words, a solution to the system is given by *B***b**. We consider *B* as an *inverse of A*.

Note that in order to have $AB = BA = I_n$, both A and B must be $n \times n$ matrices. To sum up, we will define the notion of *inverse matrix* for square matrices, and we will use it to solve the equations and to do more.

Remark. If we have $AB = BA = I_n$ and $CA = AC = I_n$, then we get

$$C = CI_n = CAB = I_nB = B.$$

In other words, if two matrices behave like *inverses* of *A*, they must be the same. We can say there is **the** inverse of *A*.

Definition 3.1. Let A be an $n \times n$ matrix. If there exists an $n \times n$ matrix A^{-1} such that

$$AA^{-1} = A^{-1}A = I_n,$$

then we call A^{-1} the *inverse* of A. If A has the inverse, we say A is invertible.

The followings are properties about the inverse matrix.

Theorem 3.1. If A^{-1} exists, then the $n \times n$ system $A\mathbf{x} = \mathbf{b}$ has the unique solution given by $\mathbf{x} = A^{-1}\mathbf{b}$ for any \mathbf{b} .

Proof. In Section 3.5.

Theorem 3.2. An $n \times n$ matrix A is invertible if and only if rank(A) = n.

Proof. In Section 3.5.

Proposition 3.3. Let A and B be invertible $n \times n$ matrices. Then

- 1. A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- 2. *AB* is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
- 3. A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

Proof. 1. Since $A^{-1}A = I_n = AA^{-1}$, the result is trivial.

2. This is obtained by the following equalities. You can show the other equality, similarly.

$$ABB^{-1}A^{-1} = AI_nA^{-1} = AA^{-1} = I_n.$$

3. This is obtained by the following equalities. You can show the other equality, similarly.

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} = I_{n}^{T} = I_{n}.$$

Theorem 3.4. Let A and B be $n \times n$ matrices. If $AB = I_n$, then both A and B are invertible and $B = A^{-1}$.

Proof. Page 176 of the textbook.

Corollary 3.4.1. Let A and B be $n \times n$ matrices. If AB is invertible, then both A and B are invertible.

Proof. Exercise.

3.2 Gauss-Jordan Technique to find the inverse

Let $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_n$ be the column vectors of the identity matrix I_n . Suppose A is an $n \times n$ matrix with rank(A) = n, so the inverse of A exists. We want to calculate A^{-1} . If \mathbf{x}_i is the i^{th} column of A^{-1} , then we get

$$A\mathbf{x}_i = \mathbf{e}_i$$

It means that we need to solve this equation to get the column \mathbf{x}_i of the inverse A^{-1} . After applying Gauss-Jordan elimination on $[A \mid \mathbf{e}_i]$, since rank(A) = n, we get the identity matrix on the left side, and the vector \mathbf{x}_i on the right side. In other words, the reduced form of the augmented matrix is $[I_n | \mathbf{x}_i]$. This idea can be applied for any column of A^{-1} . Therefore, we can do all steps at once. Namely, we can start with the extended augmented matrix

$$\begin{bmatrix} A & | & I_n \end{bmatrix}$$

After reducing this into the reduced row-echelon form, we will have

$$\begin{bmatrix} I_n & | & A^{-1} \end{bmatrix}.$$

Example. $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & 11 \\ 4 & -3 & 10 \end{bmatrix}$ We will find the inverse A^{-1} using Gauss-Jordan method. We will reduce

$$\begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 2 & 1 & 11 & | & 0 & 1 & 0 \\ 4 & -3 & 10 & | & 0 & 0 & 1 \end{bmatrix}$$

After applying $A_{12}(-2)$, $A_{13}(-4)$, $M_2(\frac{1}{3})$, $A_{23}(-1)$, $M_3(-3)$, $A_{32}(-\frac{7}{3})$, $A_{31}(-2)$, and $A_{21}(1)$, respectively, we get

	1	0	0		-43	-4	13	
	0	1	0		-24	-2	7	.
	0	0	1		10	1	-3	
Thus, the inverse is obtained .	A^{-1}	=	$\begin{bmatrix} -4\\ -2\\ 10 \end{bmatrix}$	43 24 0	$-4 \\ -2 \\ 1$	$\begin{bmatrix} 13\\7\\-3 \end{bmatrix}$		

Exercise. Compute AA^{-1} and $A^{-1}A$ to verify that both are I_n .

Elementary matrices 3.3

Definition 3.2. Any matrix obtained by performing a single elementary row operation on the *identity matrix is called an elementary matrix. These are* (P_{ij}) *Permutation Matrix:* A matrix that results from swapping two rows of I_n , $(M_i(k))$ Scaling Matrix: A matrix obtained by multiplying i^{th} row of I_n by a nonzero scalar, and $(A_i j(k))$ Row Combination Matrix: A matrix that results from adding a k multiple of i^{th} row to j^{th} row in I_n .

Example. Here is the complete list of elementary matrices of size 3×3 :

$$P_{12} = P_{21} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad P_{13} = P_{31} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad P_{23} = P_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
$$M_1(k) = \begin{bmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad M_2(k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad M_3(k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{bmatrix}$$
$$A_{12}(k) = \begin{bmatrix} 1 & 0 & 0 \\ k & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_{13}(k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix}, \quad A_{23}(k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \end{bmatrix}$$
$$A_{21}(k) = \begin{bmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_{31}(k) = \begin{bmatrix} 1 & 0 & k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_{32}(k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix}$$

Remark. Premultiplying an $n \times p$ matrix A by an $n \times n$ elementary matrix E has the effect of performing the corresponding elementary row operation on A.

Example. Applying $A_{12}(5)$ on $\begin{bmatrix} 1 & 3 \\ 4 & 7 \end{bmatrix}$ yields $\begin{bmatrix} 1 & 3 \\ 9 & 22 \end{bmatrix}$. The elementary matrix $A_{12}(5)$ is a 2×2 matrix $\begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$. This is also obtained as $\begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} 1+0 & 3+0 \\ 5+4 & 15+7 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 9 & 22 \end{bmatrix}$.

Remark. Since any row operation is reversible, any elementary matrix is invertible.

- The inverse of permutation matrix is $(P_{ij})^{-1} = P_{ji}$.
- The inverse of scaling matrix is $(M_i(k))^{-1} = M_i(\frac{1}{k})$.
- The inverse of row combination matrix is $(A_{ij}(k))^{-1} = A_{ij}(-k)$.

If *A* is an invertible $n \times n$ matrix, then reducing it to reduced row echelon form yields I_n . So it means that there are elementary matrices E_1, E_2, \ldots, E_k such that

$$E_k E_{k-1} \dots E_1 A = I_n.$$

Therefore, we can take $A^{-1} = E_k E_{k-1} \dots E_1$. Also, we have

$$A = (A^{-1})^{-1} = (E_k E_{k-1} \dots E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} \dots E_{k-1}^{-1} E_k^{-1}.$$

Example. We find the inverse of $\begin{bmatrix} 1 & 3 \\ 1 & 5 \end{bmatrix}$. In order to reduce it to the identity matrix, we should apply $A_{12}(-1)$, $M_2(\frac{1}{2})$, and $A_{21}(-3)$, respectively. But it means we have

$$A_{21}(-3)M_2(\frac{1}{2})A_{12}(-1)A = I_2,$$

namely,

$$\begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

So the inverse is

$$A^{-1} = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{3}{2} \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{2} & -\frac{3}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

Theorem 3.5. An $n \times n$ matrix A is invertible iff A is a product of elementary matrices.

Proof. Exercise.

3.4 LU Decomposition of an invertible matrix

!!!You can skip this section if you are not interested in.

Although it is very essential concept, this section is a digression from the course. We will cover only the idea and explain its advantages.

Let *A* be an invertible $n \times n$ matrices. The **LU** decomposition of *A* means that we can write *A* as the product of a lower triangular and an upper triangular matrices. In other words, we have

$$A = LU$$

where *L* is an $n \times n$ lower triangular matrix and *U* is an $n \times n$ upper triangular matrix. We omit the algorithm that gives the decomposition, we focus on its usage instead.

Consider the $n \times n$ system of linear equation $A\mathbf{x} = \mathbf{b}$, where A = LU. If we write the system as $LU\mathbf{x} = \mathbf{b}$ and let $U\mathbf{x} = \mathbf{y}$, then solving $A\mathbf{x} = \mathbf{b}$ is equivalent to solving the pair of equations

$$L\mathbf{y} = \mathbf{b},$$
$$U\mathbf{x} = \mathbf{y}.$$

Due to the triangular form of each of coefficient matrices L and U, these systems can be solved easily by substitution.

Example. Consider the system

$$\begin{bmatrix} 6 & 18 & 3 \\ 2 & 12 & 1 \\ 4 & 15 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 19 \\ 0 \end{bmatrix}.$$

The LU decomposition of the coefficient matrix is given by

$$\begin{bmatrix} 6 & 18 & 3 \\ 2 & 12 & 1 \\ 4 & 15 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 1 & 6 & 0 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 6 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}. \quad (*)$$

Via substitution, we can solve

First, let

$$\begin{bmatrix} 3 & 0 & 0 \\ 1 & 6 & 0 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 19 \\ 0 \end{bmatrix}.$$

Indeed, we have $y_1 = 1$, $y_2 = 3$, and $y_3 = -11$. Then, we can solve (*) and have $x_3 = -11$, $x_2 = 3$, and $x_1 = -6$.

It might seem that there is no advantage to using LU factorization for solving the system over Gaussian elimination. But this is true only when we try to solve a single system. If we have a set of constants $\{\mathbf{b}_i\}$ and we expect to solve $A\mathbf{x} = \mathbf{b}_i$ for each i, instead of applying a separate Gaussian elimination for each i, we can use the same LU decomposition for each \mathbf{b}_i . This reduces the memory storage we need in a computation. That's why many computing programs like MATLAB, NumPy (Python), Eigen (C++), R, etc. use LU decomposition as a primary algorithm to solve linear equation systems.

3.5 The Invertible Matrix Theorem

In this section, we collect all conditions for being an invertible matrix in a single theorem. To decide whether *A* is invertible, we can use any of the statements 2-6.

Theorem 3.6 (Invertible Matrix Theorem). Let A be an $n \times n$ matrix. The following conditions on A are equivalent:

- 1. A is invertible.
- 2. The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for every \mathbf{b} in \mathbb{R}^n .
- 3. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution $\mathbf{x} = \mathbf{0}$.
- 4. rank(A) = n.
- 5. *A* can be expressed as a product of elementary matrices.
- 6. A is row-equivalent to I_n .

Proof. We will show each implication respectively.

 $(1 \Rightarrow 2)$ For every **b**, if **x** and **y** are solutions for A**x** = **b**, then we have A**x** = A**y**. Since A is invertible, we conclude

$$\mathbf{x} = I_n \mathbf{x} = A^{-1} A \mathbf{x} = A^{-1} A \mathbf{y} = I_n \mathbf{y} = \mathbf{y}.$$

Therefore, the system $A\mathbf{x} = \mathbf{b}$ has a unique solution.

- $(2 \Rightarrow 3)$ Taking **b** = **0** we have A**x** = **0** has a unique solution by assumption. Since the trivial solution is a solution for such system, the unique solution is the trivial solution.
- $(3 \Rightarrow 4)$ Assume $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. If $rank(A) \neq n$, since $rank(A) = rank(A^{\#})$, we would have $rank(A^{\#}) < n$. It means that we would have free parameters, and hence nontrivial solutions. Since this contradicts with our assumption, we have rank(A) = n.
- $(4 \Rightarrow 5)$ Suppose rank(A) = n. It means that reduced row-echelon form of A is I_n . It means that there are elementary matrices E_1, E_2, \ldots, E_k such that $E_k E_{k-1} \ldots E_1 A = I_n$. Therefore, we have

$$A = (E_1^{-1} E_2^{-1} \dots E_{k-1}^{-1} E_k^{-1}) I_n = E_1^{-1} E_2^{-1} \dots E_{k-1}^{-1} E_k^{-1}.$$

Since the inverses of elementary matrices are again elementary matrices, we get *A* can be expressed as a product of elementary matrices.

 $(5 \Rightarrow 6)$ If A can be expressed as a product of elementary matrices E_1, E_2, \ldots, E_k , we have

$$A = E_1 E_2 \dots E_k = E_1 E_2 \dots E_k I_n. \quad (*)$$

However, this means that we apply corresponding elementary row operations on I_n and obtain A, which means that I_n is row equivalent to A.

 $(6 \Rightarrow 1)$ If *A* is row equivalent to I_n , there are elementary row operations on I_n to obtain *A*. In other words, the equality (*) holds. Since elementary matrices and I_n are invertible, and the product of invertible matrices is invertible, we conclude that *A* is invertible.

Examples using IMT.

1. Use $1 \Leftrightarrow 3$ to show that if *A* and *B* are invertible, then *AB* is invertible.

Proof. In order to show AB is invertible, we will use (3) in IMT. So consider the system

$$(AB)\mathbf{x} = \mathbf{0}.$$
 (*)

Then $B\mathbf{x}$ becomes a solution for $A\mathbf{y} = \mathbf{0}$. Since A is invertible, by IMT, the last system has only trivial solution. Therefore, we get $B\mathbf{x} = \mathbf{0}$. Since B is also invertible, by the same reason, we get $\mathbf{x} = \mathbf{0}$. Since the system (*) has only trivial solution, by IMT, AB is invertible.

2. Is the statement below true or false?

If A is a 4×4 matrix with rank(A) = 4, then A is row-equivalent to I_4 . Answer. Yes, this is true by $4 \Leftrightarrow 6$ in IMT.

3. Is the statement below true or false?

If A is a 3×3 matrix with rank(A) = 2, then the linear system $A\mathbf{x} = \mathbf{b}$ must have infinitely many solutions.

Answer. False. IMT $(2 \Leftrightarrow 4)$ implies there is no unique solution. But this does not mean that there are infinitely many solutions. There might be no solution. For example, consider

1	2	3]	$\begin{bmatrix} x \end{bmatrix}$		[3]	
0	1	5	y	=	5	
0	0	0	$\lfloor z \rfloor$		$\overline{7}$	

Here, rank(A) = 2, but there is no solution since $rank(A^{\#}) = 3 \neq rank(A)$.

4. Is the statement below true or false?

If the linear system $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution, then A can be expressed as a product of elementary matrices.

Answer. False because if *A* can be expressed as a product of elementary matrices, then by $(3 \Leftrightarrow 5)$ in IMT, $A\mathbf{x} = \mathbf{0}$ would have only trivial solution.