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3 Week 3

3.1 Inverse of a square matrix

In classical algebra, division is considered as the inverse operation of multiplication.
For example, the multiplicative inverse of 4 is 1

4
and multiplying k with 1

4
is the same as

dividing k by 4. The same duality occurs between addition and subtraction. The additive
inverse of 4 is −4, and adding k and −4 means subtraction k − 4.

We use this "inversion" idea to solve equations. If we have 4x = 12, by multiplying
the equation with the inverse of 4, we get

x = 1x =
1

4
4x =

1

4
12 = 3.

We apply the same idea in system of linear equations. Suppose we have a system Ax = b,
and "somehow" we have another matrix B such that AB = BA = In (identity matrix,
namely the unit of matrix multiplication) and hence we get

x = Inx = BAx = Bb.

In other words, a solution to the system is given by Bb. We consider B as an inverse of A.

Note that in order to have AB = BA = In, both A and B must be n × n matrices. To
sum up, we will define the notion of inverse matrix for square matrices, and we will use it
to solve the equations and to do more.

Remark. If we have AB = BA = In and CA = AC = In, then we get

C = CIn = CAB = InB = B.

In other words, if two matrices behave like inverses of A, they must be the same. We can
say there is the inverse of A.

Definition 3.1. Let A be an n× n matrix. If there exists an n× n matrix A−1 such that

AA−1 = A−1A = In,

then we call A−1 the inverse of A. If A has the inverse, we say A is invertible.
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The followings are properties about the inverse matrix.

Theorem 3.1. If A−1 exists, then the n × n system Ax = b has the unique solution given by
x = A−1b for any b.

Proof. In Section 3.5.

Theorem 3.2. An n× n matrix A is invertible if and only if rank(A) = n.

Proof. In Section 3.5.

Proposition 3.3. Let A and B be invertible n× n matrices. Then

1. A−1 is invertible and (A−1)−1 = A.

2. AB is invertible and (AB)−1 = B−1A−1.

3. AT is invertible and (AT )−1 = (A−1)T .

Proof. 1. Since A−1A = In = AA−1, the result is trivial.

2. This is obtained by the following equalities. You can show the other equality, simi-
larly.

ABB−1A−1 = AInA
−1 = AA−1 = In.

3. This is obtained by the following equalities. You can show the other equality, simi-
larly.

AT (A−1)T = (A−1A)T = ITn = In.

Theorem 3.4. Let A and B be n× n matrices. If AB = In, then both A and B are invertible and
B = A−1.

Proof. Page 176 of the textbook.

Corollary 3.4.1. Let A and B be n × n matrices. If AB is invertible, then both A and B are
invertible.

Proof. Exercise.
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3.2 Gauss-Jordan Technique to find the inverse

Let e1, e2, e3, . . . , en be the column vectors of the identity matrix In. Suppose A is an
n× n matrix with rank(A) = n, so the inverse of A exists. We want to calculate A−1. If xi

is the ith column of A−1, then we get

Axi = ei.

It means that we need to solve this equation to get the column xi of the inverse A−1. After
applying Gauss-Jordan elimination on [A | ei], since rank(A) = n, we get the identity
matrix on the left side, and the vector xi on the right side. In other words, the reduced
form of the augmented matrix is [In | xi]. This idea can be applied for any column of A−1.
Therefore, we can do all steps at once. Namely, we can start with the extended augmented
matrix [

A | In
]
.

After reducing this into the reduced row-echelon form, we will have[
In | A−1

]
.

This method to finding A−1 is called the Gauss-Jordan technique.

Example. A =

1 −1 2
2 1 11
4 −3 10

 We will find the inverse A−1 using Gauss-Jordan method.

We will reduce 1 −1 2 | 1 0 0
2 1 11 | 0 1 0
4 −3 10 | 0 0 1


After applying A12(−2), A13(−4), M2(

1
3
), A23(−1), M3(−3), A32(−7

3
), A31(−2), and A21(1),

respectively, we get 1 0 0 | −43 −4 13
0 1 0 | −24 −2 7
0 0 1 | 10 1 −3

 .

Thus, the inverse is obtained A−1 =

−43 −4 13
−24 −2 7
10 1 −3

.

Exercise. Compute AA−1 and A−1A to verify that both are In.

3.3 Elementary matrices

Definition 3.2. Any matrix obtained by performing a single elementary row operation on the
identity matrix is called an elementary matrix. These are (Pij) Permutation Matrix: A matrix
that results from swapping two rows of In, (Mi(k)) Scaling Matrix: A matrix obtained by multi-
plying ith row of In by a nonzero scalar, and (Aij(k)) Row Combination Matrix: A matrix that
results from adding a k multiple of ith row to jth row in In.
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Example. Here is the complete list of elementary matrices of size 3× 3:

P12 = P21 =

0 1 0
1 0 0
0 0 1

 , P13 = P31 =

0 0 1
0 1 0
1 0 0

 , P23 = P32 =

1 0 0
0 0 1
0 1 0


M1(k) =

k 0 0
0 1 0
0 0 1

 , M2(k) =

1 0 0
0 k 0
0 0 1

 , M3(k) =

1 0 0
0 1 0
0 0 k


A12(k) =

1 0 0
k 1 0
0 0 1

 , A13(k) =

1 0 0
0 1 0
k 0 1

 , A23(k) =

1 0 0
0 1 0
0 k 1


A21(k) =

1 k 0
0 1 0
0 0 1

 , A31(k) =

1 0 k
0 1 0
0 0 1

 , A32(k) =

1 0 0
0 1 k
0 0 1


Remark. Premultiplying an n×p matrix A by an n×n elemen-

tary matrix E has the effect of performing the corresponding
elementary row operation on A.

Example. Applying A12(5) on
[
1 3
4 7

]
yields

[
1 3
9 22

]
. The elementary matrix A12(5) is

a 2× 2 matrix
[
1 0
5 1

]
. This is also obtained as

[
1 0
5 1

] [
1 3
4 7

]
=

[
1 + 0 3 + 0
5 + 4 15 + 7

]
=

[
1 3
9 22

]
.

Remark. Since any row operation is reversible, any elementary matrix is invertible.

• The inverse of permutation matrix is (Pij)
−1 = Pji.

• The inverse of scaling matrix is (Mi(k))
−1 = Mi(

1
k
).

• The inverse of row combination matrix is (Aij(k))
−1 = Aij(−k).

If A is an invertible n× n matrix, then reducing it to reduced row echelon form yields In.
So it means that there are elementary matrices E1, E2, . . . , Ek such that

EkEk−1 . . . E1A = In.

Therefore, we can take A−1 = EkEk−1 . . . E1. Also, we have

A = (A−1)−1 = (EkEk−1 . . . E2E1)
−1 = E−1

1 E−1
2 . . . E−1

k−1E
−1
k .
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Example. We find the inverse of
[
1 3
1 5

]
. In order to reduce it to the identity matrix,

we should apply A12(−1), M2(
1
2
), and A21(−3), respectively. But it means we have

A21(−3)M2(
1

2
)A12(−1)A = I2,

namely, [
1 −3
0 1

] [
1 0
0 1

2

] [
1 0
−1 1

] [
1 3
1 5

]
=

[
1 0
0 1

]
.

So the inverse is

A−1 =

[
1 −3
0 1

] [
1 0
0 1

2

] [
1 0
−1 1

]
=

[
1 −3

2

0 1
2

] [
1 0
−1 1

]
=

[
5
2

−3
2

−1
2

1
2

]
.

Theorem 3.5. An n× n matrix A is invertible iff A is a product of elementary matrices.

Proof. Exercise.

3.4 LU Decomposition of an invertible matrix

!!!You can skip this section if you are not interested in.

Although it is very essential concept, this section is a digression from the course. We
will cover only the idea and explain its advantages.

Let A be an invertible n × n matrices. The LU decomposition of A means that we can
write A as the product of a lower triangular and an upper triangular matrices. In other
words, we have

A = LU

where L is an n × n lower triangular matrix and U is an n × n upper triangular matrix.
We omit the algorithm that gives the decomposition, we focus on its usage instead.

Consider the n × n system of linear equation Ax = b, where A = LU . If we write the
system as LUx = b and let Ux = y, then solving Ax = b is equivalent to solving the pair
of equations

Ly = b,

Ux = y.

Due to the triangular form of each of coefficient matrices L and U , these systems can be
solved easily by substitution.

Example. Consider the system6 18 3
2 12 1
4 15 3

x1

x2

x3

 =

 3
19
0

 .
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The LU decomposition of the coefficient matrix is given by6 18 3
2 12 1
4 15 3

 =

3 0 0
1 6 0
2 3 1

2 6 1
0 1 0
0 0 1

 .

First, let 2 6 1
0 1 0
0 0 1

x1

x2

x3

 =

y1y2
y3

 . (∗)

Via substitution, we can solve3 0 0
1 6 0
2 3 1

y1y2
y3

 =

 3
19
0

 .

Indeed, we have y1 = 1, y2 = 3, and y3 = −11. Then, we can solve (∗) and have x3 = −11,
x2 = 3, and x1 = −6.

It might seem that there is no advantage to using LU factorization for solving the
system over Gaussian elimination. But this is true only when we try to solve a single
system. If we have a set of constants {bi} and we expect to solve Ax = bi for each i,
instead of applying a separate Gaussian elimination for each i, we can use the same LU
decomposition for each bi. This reduces the memory storage we need in a computation.
That’s why many computing programs like MATLAB, NumPy (Python), Eigen (C++), R,
etc. use LU decomposition as a primary algorithm to solve linear equation systems.

3.5 The Invertible Matrix Theorem

In this section, we collect all conditions for being an invertible matrix in a single theo-
rem. To decide whether A is invertible, we can use any of the statements 2-6.

Theorem 3.6 (Invertible Matrix Theorem). Let A be an n×n matrix. The following conditions
on A are equivalent:

1. A is invertible.

2. The equation Ax = b has a unique solution for every b in Rn.

3. The equation Ax = 0 has only the trivial solution x = 0.

4. rank(A) = n.

5. A can be expressed as a product of elementary matrices.

6. A is row-equivalent to In.

Proof. We will show each implication respectively.
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(1 ⇒ 2) For every b, if x and y are solutions for Ax = b, then we have Ax = Ay. Since A is
invertible, we conclude

x = Inx = A−1Ax = A−1Ay = Iny = y.

Therefore, the system Ax = b has a unique solution.

(2 ⇒ 3) Taking b = 0 we have Ax = 0 has a unique solution by assumption. Since the trivial
solution is a solution for such system, the unique solution is the trivial solution.

(3 ⇒ 4) Assume Ax = 0 has only the trivial solution. If rank(A) ̸= n, since rank(A) =
rank(A#), we would have rank(A#) < n. It means that we would have free param-
eters, and hence nontrivial solutions. Since this contradicts with our assumption,
we have rank(A) = n.

(4 ⇒ 5) Suppose rank(A) = n. It means that reduced row-echelon form of A is In. It means
that there are elementary matrices E1, E2, . . . , Ek such that EkEk−1 . . . E1A = In.
Therefore, we have

A = (E−1
1 E−1

2 . . . E−1
k−1E

−1
k )In = E−1

1 E−1
2 . . . E−1

k−1E
−1
k .

Since the inverses of elementary matrices are again elementary matrices, we get A
can be expressed as a product of elementary matrices.

(5 ⇒ 6) If A can be expressed as a product of elementary matrices E1, E2, . . . , Ek, we have

A = E1E2 . . . Ek = E1E2 . . . EkIn. (∗)

However, this means that we apply corresponding elementary row operations on In
and obtain A, which means that In is row equivalent to A.

(6 ⇒ 1) If A is row equivalent to In, there are elementary row operations on In to obtain A. In
other words, the equality (∗) holds. Since elementary matrices and In are invertible,
and the product of invertible matrices is invertible, we conclude that A is invertible.

Examples using IMT.

1. Use 1 ⇔ 3 to show that if A and B are invertible, then AB is invertible.

Proof. In order to show AB is invertible, we will use (3) in IMT. So consider the
system

(AB)x = 0. (∗)
Then Bx becomes a solution for Ay = 0. Since A is invertible, by IMT, the last system
has only trivial solution. Therefore, we get Bx = 0. Since B is also invertible, by the
same reason, we get x = 0. Since the system (∗) has only trivial solution, by IMT,
AB is invertible.
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2. Is the statement below true or false?

If A is a 4× 4 matrix with rank(A) = 4, then A is row-equivalent to I4.

Answer. Yes, this is true by 4 ⇔ 6 in IMT.

3. Is the statement below true or false?

If A is a 3×3 matrix with rank(A) = 2, then the linear system Ax = b must have infinitely
many solutions.

Answer. False. IMT (2 ⇔ 4) implies there is no unique solution. But this does
not mean that there are infinitely many solutions. There might be no solution. For
example, consider 1 2 3

0 1 5
0 0 0

xy
z

 =

35
7

 .

Here, rank(A) = 2, but there is no solution since rank(A#) = 3 ̸= rank(A).

4. Is the statement below true or false?

If the linear system Ax = 0 has a nontrivial solution, then A can be expressed as a product
of elementary matrices.

Answer. False because if A can be expressed as a product of elementary matrices,
then by (3 ⇔ 5) in IMT, Ax = 0 would have only trivial solution.
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