Linear Algebra & Differential Equations

Elif Uskuplu

If you see any mistake, please email me (euskuplu@usc.edu).

3 Week 3

3.1 Inverse of a square matrix

In classical algebra, division is considered as the inverse operation of multiplication. For example, the multiplicative inverse of 4 is $\frac{1}{4}$ and multiplying k with $\frac{1}{4}$ is the same as dividing k by 4. The same duality occurs between addition and subtraction. The additive inverse of 4 is -4 , and adding k and -4 means subtraction $k - 4$.

We use this "inversion" idea to solve equations. If we have $4x = 12$, by multiplying the equation with the *inverse of* 4, we get

$$
x = 1x = \frac{1}{4}4x = \frac{1}{4}12 = 3.
$$

We apply the same idea in system of linear equations. Suppose we have a system $A\mathbf{x} = \mathbf{b}$, and "somehow" we have another matrix B such that $AB = BA = I_n$ (identity matrix, namely the unit of matrix multiplication) and hence we get

$$
\mathbf{x} = I_n \mathbf{x} = BA \mathbf{x} = B \mathbf{b}.
$$

In other words, a solution to the system is given by B**b**. We consider B as an *inverse of* A.

Note that in order to have $AB = BA = I_n$, both A and B must be $n \times n$ matrices. To sum up, we will define the notion of *inverse matrix* for square matrices, and we will use it to solve the equations and to do more.

Remark. If we have $AB = BA = I_n$ and $CA = AC = I_n$, then we get

$$
C = CI_n = CAB = I_nB = B.
$$

In other words, if two matrices behave like *inverses* of A, they must be the same. We can say there is **the** inverse of A.

Definition 3.1. Let A be an $n \times n$ matrix. If there exists an $n \times n$ matrix A^{-1} such that

$$
AA^{-1} = A^{-1}A = I_n,
$$

then we call A^{-1} the *inverse* of A *. If* A *has the inverse, we say* A *is invertible.*

The followings are properties about the inverse matrix.

Theorem 3.1. If A^{-1} exists, then the $n \times n$ system $A\mathbf{x} = \mathbf{b}$ has the unique solution given by $x = A^{-1}b$ *for any b*.

Proof. In Section [3.5.](#page-5-0)

Theorem 3.2. An $n \times n$ matrix A is invertible if and only if $rank(A) = n$.

Proof. In Section [3.5.](#page-5-0)

Proposition 3.3. Let A and B be invertible $n \times n$ matrices. Then

- 1. A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- 2. AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
- *3.* A^T is invertible and $(A^T)^{-1} = (A^{-1})^T$.

Proof. 1. Since $A^{-1}A = I_n = AA^{-1}$, the result is trivial.

2. This is obtained by the following equalities. You can show the other equality, similarly.

$$
ABB^{-1}A^{-1} = AI_nA^{-1} = AA^{-1} = I_n.
$$

3. This is obtained by the following equalities. You can show the other equality, similarly.

$$
A^T (A^{-1})^T = (A^{-1}A)^T = I_n^T = I_n.
$$

 \Box

 \Box

 \Box

Theorem 3.4. Let A and B be $n \times n$ matrices. If $AB = I_n$, then both A and B are invertible and $B = A^{-1}$.

Proof. Page 176 of the textbook.

Corollary 3.4.1. Let A and B be $n \times n$ matrices. If AB is invertible, then both A and B are *invertible.*

Proof. Exercise.

 \Box

 \Box

3.2 Gauss-Jordan Technique to find the inverse

Let $e_1, e_2, e_3, \ldots, e_n$ be the column vectors of the identity matrix I_n . Suppose A is an $n \times n$ matrix with $rank(A) = n$, so the inverse of A exists. We want to calculate A^{-1} . If \mathbf{x}_i is the i^{th} column of A^{-1} , then we get

$$
A\mathbf{x}_i=\mathbf{e}_i.
$$

It means that we need to solve this equation to get the column \mathbf{x}_i of the inverse $A^{-1}.$ After applying Gauss-Jordan elimination on $[A \mid \mathbf{e}_i]$, since $rank(A) = n$, we get the identity matrix on the left side, and the vector x_i on the right side. In other words, the reduced form of the augmented matrix is $[I_n \,|\, \mathbf{x}_i].$ This idea can be applied for any column of $A^{-1}.$ Therefore, we can do all steps at once. Namely, we can start with the extended augmented matrix

$$
\begin{bmatrix} A & | & I_n \end{bmatrix}.
$$

After reducing this into the reduced row-echelon form, we will have

$$
\left[\begin{matrix} I_n & | & A^{-1} \end{matrix}\right].
$$

This method to finding A[−]¹ is called the **Gauss-Jordan technique**.

Example. $A =$ $\sqrt{ }$ $\overline{}$ 1 −1 2 2 1 11 4 −3 10 1 We will find the inverse A^{-1} using Gauss-Jordan method.

We will reduce

$$
\begin{bmatrix} 1 & -1 & 2 & | & 1 & 0 & 0 \\ 2 & 1 & 11 & | & 0 & 1 & 0 \\ 4 & -3 & 10 & | & 0 & 0 & 1 \end{bmatrix}
$$

After applying $A_{12}(-2)$, $A_{13}(-4)$, $M_2(\frac{1}{3})$ $(\frac{1}{3})$, $A_{23}(-1)$, $M_3(-3)$, $A_{32}(-\frac{7}{3})$ $(\frac{7}{3})$, $A_{31}(-2)$, and $A_{21}(1)$, respectively, we get

Exercise. Compute AA^{-1} and $A^{-1}A$ to verify that both are I_n .

3.3 Elementary matrices

Definition 3.2. *Any matrix obtained by performing a single elementary row operation on the identity matrix is called an elementary matrix. These are* (P_{ij}) **Permutation Matrix:** A matrix *that results from swapping two rows of* I_n , $(M_i(k))$ **Scaling Matrix:** A matrix obtained by multi*plying* i th *row of* Iⁿ *by a nonzero scalar, and (*Aij(k)*) Row Combination Matrix: A matrix that* results from adding a k multiple of i^{th} row to j^{th} row in $I_n.$

Example. Here is the complete list of elementary matrices of size 3×3 :

$$
P_{12} = P_{21} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad P_{13} = P_{31} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad P_{23} = P_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}
$$

$$
M_1(k) = \begin{bmatrix} k & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad M_2(k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad M_3(k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{bmatrix}
$$

$$
A_{12}(k) = \begin{bmatrix} 1 & 0 & 0 \\ k & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_{13}(k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix}, \quad A_{23}(k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \end{bmatrix}
$$

$$
A_{21}(k) = \begin{bmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_{31}(k) = \begin{bmatrix} 1 & 0 & k \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_{32}(k) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix}
$$

Remark. Premultiplying an $n \times p$ matrix A by an $n \times n$ elementary matrix E has the effect of performing the corresponding elementary row operation on \overline{A} .

Example. Applying $A_{12}(5)$ on $\begin{bmatrix} 1 & 3 \\ 4 & 7 \end{bmatrix}$ yields $\begin{bmatrix} 1 & 3 \\ 9 & 22 \end{bmatrix}$. The elementary matrix $A_{12}(5)$ is a 2 \times 2 matrix $\begin{bmatrix} 1 & 0 \ 5 & 1 \end{bmatrix}$. This is also obtained as $\begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 4 & 7 \end{bmatrix} =$ $\begin{bmatrix} 1+0 & 3+0 \\ 5+4 & 15+7 \end{bmatrix}$ = $\begin{bmatrix} 1 & 3 \\ 9 & 22 \end{bmatrix}$.

Remark. Since any row operation is reversible, any elementary matrix is invertible.

- The inverse of permutation matrix is $(P_{ij})^{-1} = P_{ji}$.
- The inverse of scaling matrix is $(M_i(k))^{-1} = M_i(\frac{1}{k})$ $\frac{1}{k}$.
- The inverse of row combination matrix is $(A_{ij}(k))^{-1} = A_{ij}(-k)$.

If A is an invertible $n \times n$ matrix, then reducing it to reduced row echelon form yields I_n . So it means that there are elementary matrices E_1, E_2, \ldots, E_k such that

$$
E_k E_{k-1} \dots E_1 A = I_n.
$$

Therefore, we can take $A^{-1} = E_k E_{k-1} \dots E_1$. Also, we have

$$
A = (A^{-1})^{-1} = (E_k E_{k-1} \dots E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} \dots E_{k-1}^{-1} E_k^{-1}.
$$

Example. We find the inverse of $\begin{bmatrix} 1 & 3 \\ 1 & 5 \end{bmatrix}$. In order to reduce it to the identity matrix, we should apply $A_{12}(-1)$, $M_2(\frac{1}{2})$ $\frac{1}{2}$), and $A_{21}(-3)$, respectively. But it means we have

$$
A_{21}(-3)M_2(\frac{1}{2})A_{12}(-1)A = I_2,
$$

namely,

$$
\begin{bmatrix} 1 & -3 \ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \ 1 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}
$$

.

So the inverse is

$$
A^{-1} = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{3}{2} \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{2} & -\frac{3}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}.
$$

Theorem 3.5. An $n \times n$ *matrix* A *is invertible iff A is a product of elementary matrices.*

Proof. Exercise.

 \Box

3.4 LU Decomposition of an invertible matrix

!!!You can skip this section if you are not interested in.

Although it is very essential concept, this section is a digression from the course. We will cover only the idea and explain its advantages.

Let A be an invertible $n \times n$ matrices. The LU decomposition of A means that we can write A as the product of a lower triangular and an upper triangular matrices. In other words, we have

$$
A = LU
$$

where L is an $n \times n$ lower triangular matrix and U is an $n \times n$ upper triangular matrix. We omit the algorithm that gives the decomposition, we focus on its usage instead.

Consider the $n \times n$ system of linear equation $A\mathbf{x} = \mathbf{b}$, where $A = LU$. If we write the system as $LU**x** = **b**$ and let $U**x** = **y**$, then solving $A**x** = **b**$ is equivalent to solving the pair of equations

$$
Ly = \mathbf{b},
$$

$$
U\mathbf{x} = \mathbf{y}.
$$

Due to the triangular form of each of coefficient matrices L and U , these systems can be solved easily by substitution.

Example. Consider the system

$$
\begin{bmatrix} 6 & 18 & 3 \ 2 & 12 & 1 \ 4 & 15 & 3 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 3 \ 19 \ 0 \end{bmatrix}.
$$

The LU decomposition of the coefficient matrix is given by

$$
\begin{bmatrix} 6 & 18 & 3 \ 2 & 12 & 1 \ 4 & 15 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \ 1 & 6 & 0 \ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 6 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}.
$$

First, let

$$
\begin{bmatrix} 2 & 6 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} . (*)
$$

Via substitution, we can solve

$$
\begin{bmatrix} 3 & 0 & 0 \\ 1 & 6 & 0 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 3 \\ 19 \\ 0 \end{bmatrix}.
$$

Indeed, we have $y_1 = 1$, $y_2 = 3$, and $y_3 = -11$. Then, we can solve (*) and have $x_3 = -11$, $x_2 = 3$, and $x_1 = -6$.

It might seem that there is no advantage to using LU factorization for solving the system over Gaussian elimination. But this is true only when we try to solve a single system. If we have a set of constants $\{b_i\}$ and we expect to solve $Ax = b_i$ for each i, instead of applying a separate Gaussian elimination for each i , we can use the same LU decomposition for each \mathbf{b}_i . This reduces the memory storage we need in a computation. That's why many computing programs like MATLAB, NumPy (Python), Eigen (C++), R, etc. use LU decomposition as a primary algorithm to solve linear equation systems.

3.5 The Invertible Matrix Theorem

In this section, we collect all conditions for being an invertible matrix in a single theorem. To decide whether A is invertible, we can use any of the statements 2-6.

Theorem 3.6 (Invertible Matrix Theorem)**.** *Let* A *be an* n×n *matrix. The following conditions on* A *are equivalent:*

- *1.* A *is invertible.*
- 2. The equation $Ax = b$ has a unique solution for every **b** in \mathbb{R}^n .
- *3. The equation* $Ax = 0$ *has only the trivial solution* $x = 0$ *.*
- 4. $rank(A) = n$.
- *5.* A *can be expressed as a product of elementary matrices.*
- 6. A *is row-equivalent to* I_n .

Proof. We will show each implication respectively.

 $(1 \Rightarrow 2)$ For every **b**, if **x** and **y** are solutions for A **x** = **b**, then we have A **x** = A **y**. Since A is invertible, we conclude

$$
\mathbf{x} = I_n \mathbf{x} = A^{-1} A \mathbf{x} = A^{-1} A \mathbf{y} = I_n \mathbf{y} = \mathbf{y}.
$$

Therefore, the system A **x** = **b** has a unique solution.

- $(2 \Rightarrow 3)$ Taking **b** = **0** we have A **x** = **0** has a unique solution by assumption. Since the trivial solution is a solution for such system, the unique solution is the trivial solution.
- $(3 \Rightarrow 4)$ Assume $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. If $rank(A) \neq n$, since $rank(A) =$ $rank(A^{\#})$, we would have $rank(A^{\#}) < n$. It means that we would have free parameters, and hence nontrivial solutions. Since this contradicts with our assumption, we have $rank(A) = n$.
- $(4 \Rightarrow 5)$ Suppose $rank(A) = n$. It means that reduced row-echelon form of A is I_n . It means that there are elementary matrices E_1, E_2, \ldots, E_k such that $E_k E_{k-1} \ldots E_1 A = I_n$. Therefore, we have

$$
A = (E_1^{-1}E_2^{-1} \dots E_{k-1}^{-1}E_k^{-1})I_n = E_1^{-1}E_2^{-1} \dots E_{k-1}^{-1}E_k^{-1}.
$$

Since the inverses of elementary matrices are again elementary matrices, we get A can be expressed as a product of elementary matrices.

 $(5 \Rightarrow 6)$ If A can be expressed as a product of elementary matrices E_1, E_2, \ldots, E_k , we have

$$
A = E_1 E_2 \dots E_k = E_1 E_2 \dots E_k I_n. \quad (*)
$$

However, this means that we apply corresponding elementary row operations on I_n and obtain A, which means that I_n is row equivalent to A.

 $(6 \Rightarrow 1)$ If A is row equivalent to I_n , there are elementary row operations on I_n to obtain A. In other words, the equality $(*)$ holds. Since elementary matrices and I_n are invertible, and the product of invertible matrices is invertible, we conclude that A is invertible.

Examples using IMT.

1. Use $1 \Leftrightarrow 3$ to show that if A and B are invertible, then AB is invertible.

Proof. In order to show AB is invertible, we will use (3) in IMT. So consider the system

$$
(AB)\mathbf{x} = \mathbf{0}.\qquad (*)
$$

Then Bx becomes a solution for A **y** = **0**. Since A is invertible, by IMT, the last system has only trivial solution. Therefore, we get $Bx = 0$. Since B is also invertible, by the same reason, we get $x = 0$. Since the system $(*)$ has only trivial solution, by IMT, AB is invertible. \Box

 \Box

2. Is the statement below true or false?

If A *is a* 4 \times 4 *matrix with* $rank(A) = 4$ *, then* A *is row-equivalent to* I_4 *.*

Answer. Yes, this is true by $4 \Leftrightarrow 6$ in IMT.

3. Is the statement below true or false?

If A is a 3×3 *matrix with* $rank(A) = 2$ *, then the linear system* $Ax = b$ *must* have infinitely *many solutions.*

Answer. False. IMT ($2 \Leftrightarrow 4$) implies there is no unique solution. But this does not mean that there are infinitely many solutions. There might be no solution. For example, consider

Here, $rank(A) = 2$, but there is no solution since $rank(A^{\#}) = 3 \neq rank(A)$.

4. Is the statement below true or false?

If the linear system A*x* = *0 has a nontrivial solution, then* A *can be expressed as a product of elementary matrices.*

Answer. False because if A can be expressed as a product of elementary matrices, then by $(3 \Leftrightarrow 5)$ in IMT, $A\mathbf{x} = \mathbf{0}$ would have only trivial solution.