
Linear Algebra & Differential Equations
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If you see any mistake, please email me (euskuplu@usc.edu).

7 Week 7

Consider the set of three vectors in R2: v1 = (1, 0), v2 = (0, 1), and v3 = (1, 1).

These vectors span R2 because you can combine them (using scalar multiplication
and addition) to get any vector in R2. However, one of these vectors is not necessary for
spanning R2.

v3 = v1 + v2

This shows that v3 can be obtained by adding v1 and v2, making v3 the "extra" or
dependent vector.

If you remove v3, the remaining set {v1,v2} still spans R2, and neither can be obtained
from the other. This illustrates the concept of linear independence: a set of vectors is
linearly independent if no vector in the set can be written as a linear combination of the
others. In this example, after removing v3, the vectors v1 and v2 are linearly independent
because you cannot multiply one by a scalar to get the other. Their linear independence
is critical for them to span R2 because it ensures that they cover the entire plane without
redundancy.

This example motivates the definitions of dependency and independency in vector
spaces: a set of vectors is dependent if at least one vector can be expressed as a combina-
tion of the others, reducing the set’s "efficiency" in spanning a space. Conversely, a set is
independent if no such combination is possible, maximizing the set’s utility in spanning
and defining dimensions within vector spaces.

7.1 Linear Dependence & Independence

Definition 7.1. A set of vectors {v1,v2, . . . ,vn} in a vector space V over a field F is said to
be linearly dependent if there exist scalars a1, a2, . . . , an in F , not all zero, such that the linear
combination of these vectors equals the zero vector:

a1v1 + a2v2 + · · ·+ anvn = 0

where 0 denotes the zero vector in V . If no such non-trivial combination exists (i.e., if the equation
above holds only when a1 = a2 = · · · = an = 0), then the vectors are said to be linearly
independent.

1



Remark. The definition implies a trivial result: The vectors v1,v2, . . . ,vn are linearly
independent if and only if they are NOT linearly dependent.

Example 1. (The Zero Vector) The set containing only the zero vector in any vector
space, such as {0} in Rn, is linearly dependent. For any scalar a ̸= 0,

a · 0 = 0.

Example 2. (A Singleton Set of a Nonzero Vector) A singleton set containing one
nonzero vector, such as {v} where v ̸= 0, is linearly independent because for any nonzero
scalar a, the vector a · v ̸= 0.

Example 3. Consider the vectors v1 = (1, 2) and v2 = (2, 4) in R2. These vectors are
linearly dependent because there exist scalars a, b such that av1 + bv2 = 0, specifically
a = −2, b = 1, and we have

−2(1, 2) + (2, 4) = (0, 0).

Example 4. Consider the vectors v1 = (1, 0, 0), v2 = (0, 1, 0), and v3 = (1, 1, 0) in R3.
These vectors are linearly dependent because v3 can be expressed as a linear combination
of v1 and v2,

v3 = v1 + v2.

So we have −v1 − v2 + v3 = 0.

Note that any two of v1, v2, v3 are linearly independent. For example, suppose we
have av1 + bv3 = (0, 0, 0), then it means (a, b, 0) = (0, 0, 0) so a = b = 0. Similarly, you can
show {v1,v2} and {v2,v3} are linearly independent sets.

Example 5. We will prove that the vectors v1 = (3, 1, 2), v2 = (1, 0, 2), and v3 = (2, 1, 1)
are linearly independent, so we need to show that the only solution to the equation

a1v1 + a2v2 + a3v3 = 0

is a1 = a2 = a3 = 0.

Substituting the given vectors into the equation, we obtain:

a1(3, 1, 2) + a2(1, 0, 2) + a3(2, 1, 1) = (0, 0, 0)

This leads to the following system of linear equations:

3a1 + a2 + 2a3 = 0

a1 + a3 = 0

2a1 + 2a2 + a3 = 0

Solving this system of equations, we seek to find values of a1, a2, and a3 that satisfy all
three equations simultaneously. However, the system has only the trivial solution since
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the determinant of the coefficient matrix A =

3 1 2
1 0 1
2 2 1

 is nonzero (det(A) = −1). So we

have
a1 = 0, a2 = 0, a3 = 0

This solution indicates that the only way the linear combination of v1, v2, and v3 re-
sults in the zero vector is if all coefficients a1, a2, and a3 are zero.

Therefore, the vectors v1, v2, and v3 are linearly independent.

Example of Linearly Independent 2× 2 Matrices

Consider the following two 2× 2 matrices:

A =

(
1 0
0 1

)
, B =

(
0 1
1 0

)
To determine if these matrices are linearly independent, we need to see if the only solution
to the equation

c1A+ c2B = 0

is c1 = c2 = 0, where 0 is the 2× 2 zero matrix.

Expanding the equation, we get:

c1

(
1 0
0 1

)
+ c2

(
0 1
1 0

)
=

(
0 0
0 0

)
This leads to a system of equations: 

c1 + 0 = 0

0 + c2 = 0

0 + c2 = 0

c1 + 0 = 0

The only solution is c1 = 0 and c2 = 0, proving that matrices A and B are linearly inde-
pendent.

Example of Linearly Dependent 2× 2 Matrices

Consider the two 2× 2 matrices:

C =

(
1 2
3 4

)
, D =

(
2 4
6 8

)
To check if these matrices are linearly dependent, we look for scalars c1 and c2 not both
zero, such that:

c1C + c2D = 0
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Notice that matrix D is exactly 2 times matrix C. Thus, we can choose c1 = 2 and c2 = −1
to satisfy:

2

(
1 2
3 4

)
− 1

(
2 4
6 8

)
=

(
0 0
0 0

)
This demonstrates that matrices C and D are linearly dependent since we found c1 and c2
that are not both zero and satisfy the equation.

Example with polynomials To determine that the polynomials p1(x) = 1−4x2, p2(x) =
x + 1, and p3(x) = 2 + 2x + x2 are linearly independent or not, we consider a linear
combination of these polynomials equal to the zero polynomial:

a1(1− 4x2) + a2(x+ 1) + a3(2 + 2x+ x2) = 0

Expanding and rearranging terms, we get:

(a1 + a2 + 2a3) + (a2 + 2a3)x+ (−4a1 + a3)x
2 = 0

For the above polynomial to be the zero polynomial, the coefficients of x0, x1, and x2 must
all be zero:

a1 + a2 + 2a3 = 0

a2 + 2a3 = 0

−4a1 + a3 = 0

Since det

 1 1 2
0 1 2
−4 0 1

 = 1, the system has only the trivial solution.

Since a1 = a2 = a3 = 0 is the only solution, the polynomials 1−4x2, x+1, and 2+2x+x2

are linearly independent.

Let’s continue with the theory. We have a simple but useful observation:

Theorem 7.1. A set of k vectors {v1,v2, . . . ,vk} in a vector space V over a field F is linearly
dependent if and only if at least one of the vectors in the set can be written as a linear combination
of the remaining vectors in the set.

Proof. (⇒) Assume the set {v1,v2, . . . ,vk} is linearly dependent. By definition, this means
there exist scalars a1, a2, . . . , ak, not all zero, such that:

a1v1 + a2v2 + · · ·+ akvk = 0 (1)

Without loss of generality, assume a1 ̸= 0. We can solve for v1 as follows:

v1 = −a2
a1

v2 −
a3
a1

v3 − · · · − ak
a1

vk (2)
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This shows that v1 is a linear combination of the remaining vectors, proving the suffi-
ciency condition.

(⇐) Now, assume that at least one of the vectors, say v1, can be written as a linear
combination of the remaining vectors. Then, there exist scalars c2, c3, . . . , ck such that:

v1 = c2v2 + c3v3 + · · ·+ ckvk

Rearranging, we get:

v1 − c2v2 − c3v3 − · · · − ckvk = 0

This is a non-trivial linear combination that equals the zero vector, implying that the
set of vectors is linearly dependent, which proves the necessity condition.

Hence, we have shown that a set of k vectors is linearly dependent if and only if at
least one of the vectors can be written as a linear combination of the others.

Example 1. Consider the vectors in R3:

v1 = (1, 0, 1), v2 = (2, 1, 3), v3 = (3, 1, 4).

We can express v3 as a linear combination of v1 and v2:

v3 = 1 · v1 + 1 · v2.

This shows that the set {v1,v2,v3} is linearly dependent according to the theorem.

Example 2. Consider the vectors in R2:

v1 = (1, 2), v2 = (2, 3).

There are no scalars a and b (other than a = b = 0) such that

a · v1 + b · v2 = 0.

Therefore, the set {v1,v2} is linearly independent, which indirectly supports the theorem
by showing a case where no vector in the set is a linear combination of the others, hence
the set is not linearly dependent.

Remark. Another useful observation is that if the set of vectors {v1,v2, . . . ,vk} con-
tains the zero vector, the set is indeed linearly dependent because its coefficient in the
expansion a1v1 + a2v2 + · · ·+ anvn = 0 can be nonzero.

7.2 Linear Dependence & Independence in Rn

Let v1,v2, . . . ,vk be vectors in Rn. To determine their linear dependency, we need to
solve the coefficients in

c1v1 + c2v2 + · · ·+ cnvn = 0

However, this is the same as solving the system Ac = 0 where A = [v1 v2 . . . vk] and
c = [c1 c2 . . . cn]

T . So we have the following important result.
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Theorem 7.2. Let v1,v2, . . . ,vk be vectors in Rn and A = [v1 v2 . . . vk]. Then {v1,v2, . . . ,vk}
is linearly dependent if and only if the system Ac = 0 has a nontrivial solution for c.

The theorem has the following practical corollaries:

Corollary 7.2.1. Let v1,v2, . . . ,vk be vectors in Rn and A = [v1 v2 . . . vk].

1. If k > n, then {v1,v2, . . . ,vk} is linearly dependent.

2. If k = n, then {v1,v2, . . . ,vk} is linearly dependent if and only if det(A) = 0.

Remark !! If k < n, then we need further investigation to determine the dependency.

Examples.

1. Consider the vectors in R2: v1 = (1, 0), v2 = (0, 1), and v3 = (1, 1). Here, k = 3 >
n = 2, so by the corollary, {v1,v2,v3} is linearly dependent.

2. Consider the set of vectors v1,v2,v3 in R3 defined as follows:

v1 = (1, 2, 3), v2 = (4, 5, 6), v3 = (7, 8, 9).

The matrix A formed by these vectors as columns is

A =

1 4 7
2 5 8
3 6 9

 .

The determinant of A is calculated as follows:

det(A) = 1(5 · 9− 6 · 8)− 4(2 · 9− 3 · 8) + 7(2 · 6− 3 · 5)
= 1(−3)− 4(−6) + 7(−3)

= −3− 24− 21

= −48.

Since det(A) ̸= 0, according to the corollary, the set {v1,v2,v3} is linearly indepen-
dent.

3. Given the vectors (1, 0, 2, 3), (0, 1, 2, 1), (4, 6, 2, 0), and (3, 4, 5, 4) in R4, we form the
matrix A as follows:

A =


1 0 4 3
0 1 6 4
2 2 2 5
3 1 0 4


We want to determine if these vectors are linearly dependent or independent. Ac-
cording to the corollary, if k = n and the determinant of A is 0, then the vectors
are linearly dependent. Since the determinant of A is 0, it follows that the vectors
(1, 0, 2, 3), (0, 1, 2, 1), (4, 6, 2, 0), and (3, 4, 5, 4) are linearly dependent.
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7.3 Linear Dependency in Function Spaces

Definition 7.2. The set of functions {f1, f2, . . . , fk} is linearly independent on an interval I if
and only if the only values of the scalars c1, c2, . . . , ck such that

c1f1(x) + c2f2(x) + · · ·+ ckfk(x) = 0 for all x ∈ I

are c1 = c2 = · · · = ck = 0.

Example. Let f1(x) = cos x and f2(x) = sinx defined on [0, 2π]. If a, b ∈ R are such that
a(cosx) + b(sinx) = 0 for all x ∈ [0, 2π]. Then if x = 0, then we get a = 0. If x = π/2, then
b = 0. Since a = b = 0, we get {cosx, sinx} is linearly independent.

Although the example seems easy, if we have lots of functions to check, evaluating at
right points may not be easy. The main point to notice is that the condition must hold
for all x in I . A key tool in deciding whether or not a collection of functions is linearly
independent on an interval I is the Wronskian.

Definition 7.3. Let f1, f2, . . . , fk be functions in Ck−1(I), namely, functions that can differen-
tiable k − 1 times. The Wronskian of these functions is the order k determinant defined by

W [f1, f2, . . . , fk](x) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fk(x)
f ′
1(x) f ′

2(x) · · · f ′
k(x)

...
... . . . ...

f
(k−1)
1 (x) f

(k−1)
2 (x) · · · f

(k−1)
k (x)

∣∣∣∣∣∣∣∣∣
Remark. Notice that the Wronskian is a function defined on I . Also note that this

function depends on the order of the functions in the Wronskian. For example, using
properties of determinants, W [f2, f1, . . . , fk](x) = −W [f1, f2, . . . , fk](x).

We use Wronskian to determine linear dependency of functions via the following the-
orem:

Theorem 7.3. Let f1, f2, . . . , fk be functions in Ck−1(I). If the Wronskian W [f1, f2, . . . , fk] is
nonzero at some point x0 in I , then the set {f1, f2, . . . , fk} is linearly independent on I .

Proof. In the textbook.

Examples.

• Consider the functions f1(x) = ex and f2(x) = e2x. To compute the Wronskian of
these functions, we first find their derivatives:

f ′
1(x) = ex,

f ′
2(x) = 2e2x.
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Then, the Wronskian W [f1, f2](x) is given by the determinant:

W [f1, f2](x) =

∣∣∣∣ex e2x

ex 2e2x

∣∣∣∣ = ex(2e2x)− e2x(ex) = e3x.

Since W [f1, f2](x) = e3x ̸= 0 for all x, the functions f1(x) = ex and f2(x) = e2x are
linearly independent.

• Consider the functions g1(x) = x and g2(x) = x2. To compute the Wronskian of these
functions, we first find their derivatives:

g′1(x) = 1,

g′2(x) = 2x.

Then, the Wronskian W [g1, g2](x) is given by the determinant:

W [g1, g2](x) =

∣∣∣∣x x2

1 2x

∣∣∣∣ = x(2x)− x2(1) = 2x2 − x2 = x2.

Since W [g1, g2](x) = x2 ̸= 0 for all x except x = 0, the functions g1(x) = x and
g2(x) = x2 are linearly independent on any interval that does not include x = 0.

Remarks:

1. Notice that it is only necessary for the Wronskian W [f1, f2, . . . , fk](x) to be nonzero
at one point in I for {f1, f2, . . . , fk} to be linearly independent on I .

2. Theorem 7.3 does not say that if W [f1, f2, . . . , fk](x) = 0 for every x in I , then
{f1, f2, . . . , fk} is linearly dependent on I . Namely, the theorem is not an "if and
only if" statement. Instead, the logical equivalent of the preceding theorem is: If
{f1, f2, . . . , fk} is linearly dependent on I , then W [f1, f2, . . . , fk](x) = 0 at every point
x of I .

3. If W [f1, f2, . . . , fk](x) = 0 for all x in I , Theorem 7.3 gives no information as to the
linear dependence or independence of {f1, f2, . . . , fk} on I .

The Wronskian is a fundamental tool in mathematics, particularly in the domains of
differential equations and linear algebra. It plays a crucial role in determining solutions
to differential equations. We will establish that if we have n functions that are solutions
of an equation of the form

y(n) + a1(x)y
(n−1) + . . .+ an−1(x)y

′ + an(x)y = 0

on an interval I , then if the Wronskian of these functions is identically zero on I . However,
these topics will be the subject of the lectures in the upcoming weeks :)
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