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8 Week 8

8.1 Basis of a vector space

The concept of a basis in a vector space is akin to the building blocks or foundation essen-
tial for constructing any vector within that space. Imagine these basis vectors as the fun-
damental pieces from which all vectors in the space can be composed, much like LEGO
bricks can be combined to build various structures.

A basis acts as the fundamental set of blocks or bricks, enabling the construction of
any vector in the vector space, similar to how a diverse set of LEGO pieces allows for the
creation of myriad designs.

Just as each building has a unique arrangement of blocks, every vector in a vector
space can be uniquely represented as a combination of the basis vectors. This uniqueness
ensures that no two vectors are identical when they are composed of the basis vectors in
different proportions.

The essence of a good set of building blocks is its minimality and sufficiency—having
exactly what is needed, no more, no less. Correspondingly, a basis for a vector space is
the smallest set of vectors that can span the entire space, emphasizing the efficiency and
necessity of each basis vector.

A basis provides a versatile and adaptable foundation for the vector space, akin to
selecting the right foundational elements for constructing buildings of various purposes.
The choice of basis can simplify the representation and manipulation of vectors, much
like choosing the appropriate building blocks can facilitate construction.

Consider a basis as establishing a coordinate system within the vector space. Similar
to how a grid of streets and addresses allows for the precise location of any place within a
city, the basis vectors enable the precise identification of any vector in the space through
a unique set of coordinates.

In summary, a basis of a vector space is the groundwork or substructure, providing a
unique, minimal, and sufficient foundation from which any vector in the space can be
constructed. It offers a versatile framework that underpins the entire space, facilitating
the creation of a coordinate system to precisely locate and represent any vector within
that domain.
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Definition 8.1. A basis of a vector space V over a field F is defined as a set of vectors B =
{v1,v2, . . . ,vn} in V that satisfies two main criteria:

1. The vectors in B are linearly independent.

2. The set B spans V .

If a set B meets these conditions, then it is a basis for the vector space V , and the dimension of V
is defined as the number of vectors in B, denoted by dim(V ).

Example. The standard basis for the n-dimensional real vector space Rn consists of
n vectors, where each vector has exactly one component equal to 1 and all other compo-
nents equal to 0. These basis vectors are denoted as follows:

e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1)

As an exercise, you can prove that these are linearly independent and spanning Rn.
Also, we conclude dim(Rn) = n.

Example. The space Mn(R) of all n × n matrices over the real numbers is a vector
space. The standard basis for this vector space consists of n2 matrices, where each matrix
has a single entry of 1 in a unique position and all other entries are 0. These basis matrices
can be denoted as Eij , where 1 ≤ i, j ≤ n, and the matrix Eij has a 1 in the i-th row and
j-th column, and 0s elsewhere.

Eij = (ekl) where ekl =

{
1 if k = i and l = j,

0 otherwise.

For example, in the case of 2 × 2 matrices, the standard basis for M2(R) consists of the
following matrices:

E11 =

(
1 0
0 0

)
, E12 =

(
0 1
0 0

)
, E21 =

(
0 0
1 0

)
, E22 =

(
0 0
0 1

)
.

As an exercise, you can prove that Eijs are linearly independent and spanning Mn(R).
Also, we conclude dim(Mn(R)) = n2.

Example. The vector space Mm×n(R) consists of all m × n matrices with real number
entries. The standard basis for this space is a set of matrices where each matrix has one
entry of 1 in a distinct position and 0 in all other positions. These basis elements are
denoted as Eij , where 1 ≤ i ≤ m and 1 ≤ j ≤ n. The matrix Eij has a 1 in the i-th row and
j-th column and 0s elsewhere.

Eij = (ekl) for 1 ≤ k ≤ m, 1 ≤ l ≤ n, where ekl =

{
1 if k = i and l = j,

0 otherwise.
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For instance, in the case of 3× 2 matrices, part of the standard basis for M3×2(R) includes
matrices such as:

E11 =

1 0
0 0
0 0

 , E12 =

0 1
0 0
0 0

 , E21 =

0 0
1 0
0 0

 , . . .

As an exercise, you can prove that Eijs are linearly independent and spanning Mm×n(R).
Also, we conclude dim(Mm×n(R)) = mn.

Example. The vector space Pn(R) consists of all polynomials with real coefficients and
degree at most n. A basis for this vector space is a set of polynomials that are linearly
independent and span the entire space. The standard basis for Pn(R) is given by the
polynomials:

{1, x, x2, . . . , xn}

This means that any polynomial p(x) ∈ Pn(R) of degree at most n can be written uniquely
as a linear combination of these basis polynomials. Specifically, a polynomial p(x) can be
expressed as:

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n

where a0, a1, . . . , an are real numbers (coefficients). Also, we conclude dim(Pn(R)) = n+1.

Remark. If V is the trivial vector space {0}, then we define its dimension to be zero,
namely, dim({0}) = 0.

Unusual example for curious students :) The vector space Fun(R,R) encompasses
all functions mapping real numbers to real numbers. Unlike finite-dimensional vec-
tor spaces, or even some infinite-dimensional spaces with more structure, Fun(R,R)
poses significant challenges in identifying a basis.

A Hamel basis for Fun(R,R) would allow every function within the space to be
uniquely expressed as a finite linear combination of basis functions. However, explic-
itly constructing or even identifying a Hamel basis for such a general and vast space
is impractical with conventional mathematical approaches.

The existence of a Hamel basis in Fun(R,R), as in any vector space, relies on the
Axiom of Choice. This foundational principle in set theory enables the assertion of a
basis’s existence without the necessity for its explicit construction, especially in spaces
as large as Fun(R,R).

While the Axiom of Choice facilitates the theoretical foundation for the existence
of a basis in Fun(R,R), the practical implications of such a basis are limited. In
real-world applications, mathematicians often resort to alternative frameworks bet-
ter suited to the nature of the functions and analyses in question.

Although the textbook includes full proofs of the following theorems and others like
them, it’s worth emphasizing their significance due to their utility.
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Remark. A basis of a vector space V can be considered as
the minimum spanning set and the maximum linearly inde-
pendent set.
Theorem 8.1. If dim(V ) = n, then any set of n linearly independent vectors in V is a basis for V .

Proof. Let S = {v1,v2, . . . ,vn} be a set of n linearly independent vectors in V . Since
dim(V ) = n, it follows that a basis for V must consist of exactly n-many vectors. We know
that a set of vectors forms a basis for V if and only if it is linearly independent and spans
V .

Since S is linearly independent by assumption, it remains to show that S spans V .
Assume, for the sake of contradiction, that S does not span V . Then, there exists a vector
v ∈ V that cannot be expressed as a linear combination of vectors in S. Adding v to S
creates a set S ′ = S ∪ {v} of (n + 1)-many vectors. Since v cannot be written as a linear
combination of the vectors in S, the set S ′ is linearly independent. This contradicts the
fact that the maximum number of linearly independent vectors in V is n, as dim(V ) = n.

Therefore, our assumption that S does not span V must be false. Hence, S is linearly
independent and spans V , making it a basis for V .

Example. Consider the vector space M2×2(R) of 2× 2 real matrices. The dimension of
this space is n = 4

Consider the following set of 2× 2 matrices:

A1 =

(
1 0
0 1

)
, A2 =

(
1 0
0 −1

)
, A3 =

(
0 1
1 0

)
, A4 =

(
0 1
−1 0

)
.

If a, b, c, d ∈ R such that aA1 + bA2 + cA3 + dA4 =

(
0 0
0 0

)
. Then, we get

a+ b = 0

c+ d = 0

c− d = 0

a− b = 0

It is easy to see that a = b = c = d = 0, so {A1, A2, A3, A4} is linearly independent. By the
theorem, this is a basis for M2(R).

Theorem 8.2. If dim(V ) = n, then any set of n vectors in V that spans V is a basis for V .

Proof. Let S = {v1,v2, . . . ,vn} be a set of n vectors in V that spans V . Since dim(V ) = n,
the dimension of V indicates that the maximum number of linearly independent vectors
in V is n. To prove that S is a basis for V , we need to show that it is also linearly indepen-
dent.
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Assume for the sake of contradiction that S is not linearly independent. This means
there exists a non-trivial linear combination of the vectors in S that equals the zero vector,
i.e., there exist scalars a1, a2, . . . , an, not all zero, such that a1v1 + a2v2 + . . .+ anvn = 0.

However, since S spans V , any vector in V can be expressed as a linear combination of
vectors in S. If S were not linearly independent, we could remove at least one vector from
S and still span V , contradicting the fact that dim(V ) = n, namely, the minimal spanning
set contains n vectors. This contradiction implies that our assumption is false, and thus S
must be linearly independent.

Therefore, since S spans V and is linearly independent, S is a basis for V .

Example. To show that the polynomials 3, 1 + x, and 2 + x2 span P2(R), we must
demonstrate that any polynomial p(x) of degree at most 2 can be written as a linear com-
bination of these polynomials.

Let p(x) = ax2 + bx + c be an arbitrary element of P2(R). We want to find scalars
k1, k2, k3 such that k1 · 3 + k2 · (1 + x) + k3 · (2 + x2) = ax2 + bx+ c.

By equating coefficients, we obtain the system of equations:

3k1 + k2 + 2k3 = c,

k2 = b,

k3 = a.

This system of equations has a solution for k1, k2, k3 for any given a, b, c in R, namely:

k1 =
1

3
(c− b− 2a),

k2 = b,

k3 = a.

Thus, any polynomial p(x) = ax2 + bx+ c in P2(R) can be written as a linear combina-
tion of 3, 1+x, and 2+x2. Therefore, these polynomials span P2(R). Since dim(P2(R)) = 3,
by the theorem, {3, 1 + x, 2 + x2} is a basis for P2(R).

Now, we can combine these as a one corollary:

Corollary 8.1. If dim(V ) = n and S = {v1, . . . ,vn} is a set of n vectors in V , the following
statements are equivalent:

1. S is a basis for V .

2. S is linearly independent.

3. S spans V .
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Vector Space Standard Basis Dimension
Rn {e1, e2, . . . , en} n
Mm×n(R) {Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} mn
Mn(R) (Square Matrices) {Eij | 1 ≤ i, j ≤ n} n2

Pn(R) {1, x, x2, . . . , xn} n+ 1
Cn {e1, e2, . . . , en} n

Remark. Suppose that V is a vector space with dim[V ] = n, and let S = {v1, v2, . . . , vk}
be a subset of V .

k < n k > n k = n

S is linearly independent? Maybe No Maybe

S spans V ? No Maybe Maybe

S is a basis? No No Maybe

Another important observation is the following corollary:

Corollary 8.2. Let S be a subspace of finite dimensional vector space V . If dim(V ) = n, then

dim(S) ≤ n.

Furthermore, if dim(S) = n, then S = V .

Proof. Assume for the sake of contradiction that dim(S) > n. This would mean that there
exists a set of m > n linearly independent vectors in S. However, since S ⊆ V and
dim(V ) = n, there cannot be more than n linearly independent vectors in V , let alone in
S. This contradiction implies that our assumption is false, and therefore dim(S) ≤ n.

Now assume that dim(S) = n. Then there exists a basis for S consisting of n vectors.
Since V also has a dimension of n, this basis for S must also be a basis for V , as it is a set
of n linearly independent vectors that spans a subspace of V . Hence, every vector in V
can be expressed as a linear combination of vectors in S, which means S = V .

Example. We want to find the dimension of the null space of the matrix

A =

(
1 3
−2 −6

)
.

To do this, we solve the homogeneous system Ax = 0.

First, perform row reduction on the augmented matrix [A|0]:[
1 3 0
−2 −6 0

]
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After performing the row operations, we get:[
1 3 0
0 0 0

]
Then we get y as free variable and x = −3y, so

nullspace(A) = {(−3y, 1y) | y ∈ R} = span{(−3, 1)}.

Since a single nonzero vector is linearly independent, {(−3, 1)} is a basis for nullspace(A).
Thus dim(nullspace(A)) = 1.

Example. Let S be the subspace of M2(R) consisting of all upper triangular matrices.
The general form of an upper triangular matrix in M2(R) is(

a b
0 c

)
,

where a, b, and c are real numbers.

A basis for S can be formed by the following matrices:(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
0 1

)
.

Each matrix in this set is linearly independent from the others, and any upper trian-
gular matrix in M2(R) can be expressed as a linear combination of these matrices.

Therefore, the dimension of S, denoted as dim(S), is equal to the number of matrices
in the basis for S, which is 3.

8.2 Change of Basis

We start with an important property of bases:

Theorem 8.3. If V is a vector space with basis {v1, v2, . . . , vn}, then every vector v ∈ V can be
written uniquely as a linear combination of v1, v2, . . . , vn.

Proof. Since v1, v2, . . . , vn span V , every vector v ∈ V can be expressed as

v = a1v1 + a2v2 + · · ·+ anvn (1)

for some scalars a1, a2, . . . , an. Suppose also that

v = b1v1 + b2v2 + · · ·+ bnvn (2)

for some scalars b1, b2, . . . , bn. We will show that ai = bi for each i, which will prove the
uniqueness assertion of this theorem. Subtracting Equation (2) from Equation (1) yields

(a1 − b1)v1 + (a2 − b2)v2 + · · ·+ (an − bn)vn = 0 (3)
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But {v1, v2, . . . , vn} is linearly independent, and so Equation (3) implies that

a1 − b1 = 0, a2 − b2 = 0, . . . , an − bn = 0.

That is, ai = bi for each i = 1, 2, . . . , n.

An ordered basis for a vector space V over a field F is a sequence (rather than a
set) of linearly independent vectors in V that spans the entire vector space. Formally, an
ordered basis is a finite sequence (v1, v2, . . . , vn) such that for every vector v ∈ V , there
exists a unique sequence of scalars (a1, a2, . . . , an) ∈ F for which

v = a1v1 + a2v2 + . . .+ anvn.

The main difference between an ordered basis and a simple basis is the emphasis on the
sequence or order of the vectors, which influences the representation of vectors and linear
operators in the context of the chosen basis.

Definition 8.2. If B = {v1, v2, . . . , vn} is an ordered basis for V and v is a vector in V , then the
scalars c1, c2, . . . , cn in the unique n-tuple (c1, c2, . . . , cn) such that

v = c1v1 + c2v2 + · · ·+ cnvn

are called the components of v relative to the ordered basis B = {v1, v2, . . . , vn}. We denote
the column vector consisting of the components of v relative to the ordered basis B by [v]B and we
call [v]B the component vector of v relative to B.

Examples.

1. Consider the vector space R2 and an ordered basis B = {(1, 2), (3, 1)}. For a vector
v = (7, 5), the component vector of v relative to B can be represented as:

[v]B =

[
8/5
9/5

]
2. In the vector space of polynomials of degree at most 2, P2(R), with an ordered basis

B = {1, x, x2}, consider a polynomial p(x) = 4 + 3x+ 2x2. The component vector of
p(x) relative to B is:

[p(x)]B =

43
2


This represents the coefficients of p(x) relative to the basis B.

In the same vector space, if we consider another ordered basis C = {3, 1+x, 2+x2},
consider the same polynomial p(x) = 4 + 3x+ 2x2. We already solved the spanning
relation in the previous section. The component vector of p(x) relative to C is:

[p(x)]C =

−1
3
2
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3. For the vector space of 2× 2 matrices, M2×2(R), with an ordered basis

B =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
,

for a matrix A =

(
5 7
8 9

)
, the component vector of A relative to B is:

[A]B =


5
7
8
9


This shows how the matrix A is decomposed into the components relative to the
basis B.

Lemma 8.4. Let V be a vector space with basis B = {v1, v2, . . . , vn}, let x and y be vectors in V ,
and let c be a scalar. Then we have:

(a) [x+ y]B = [x]B + [y]B,

(b) [cx]B = c[x]B.

Proof. Easy, left as an exercise.

Let V be a vector space, and let B = {b1, b2, . . . , bn} and C = {c1, c2, . . . , cn} be two
bases for V . The change-of-basis matrix from B to C, denoted by PC←B, is the matrix
that, when applied to the coordinate vector of a vector v with respect to B, yields the
coordinate vector of v with respect to C. Formally, if [v]B is the coordinate vector of v
relative to B, then [v]C = PC←B[v]B, where [v]C is the coordinate vector of v relative to C.

To construct PC←B, express each vector bi of the basis B in terms of the basis C, and use
these expressions to form the columns of PC←B. Specifically, if bi = a1ic1+a2ic2+. . .+anicn

in terms of C, then the i-th column of PC←B is


a1i
a2i
...
ani

. In other words, we have

PC←B =
[
[b1]C [b2]C . . . [bn]C

]
Examples.

1. Let’s consider a 2-dimensional vector space V and define two bases for V :

- Basis B = {b1, b2} where b1 = (1, 0) and b2 = (0, 1). This is the standard basis for V .
- Basis C = {c1, c2} where c1 = (2, 1) and c2 = (1, 1).
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To construct the change-of-basis matrix from B to C, denoted PC←B, we need to
express each vector bi of the basis B in terms of the basis C.

Express b1 in terms of C, solving for coefficients a11 and a21 such that b1 = a11c1 +
a21c2.

Express b2 in terms of C, solving for coefficients a12 and a22 such that b2 = a12c1 +
a22c2.

These coefficients aij will form the columns of PC←B, where the i-th column is:[
a1i
a2i

]
After solving the equations, we find:

a11 = 1, a21 = −1,

a12 = −1, a22 = 2.

Therefore, the change-of-basis matrix from B to C, PC←B, is:

PC←B =

[
1 −1
−1 2

]
This matrix, when applied to the coordinate vector of a vector v with respect to B,
yields the coordinate vector of v with respect to C.

2. Let’s consider P2(R) and define two bases:

- Basis B = {1, x, x2}
- Basis C = {2 + x, x+ x2, 5 + x2}
To find the change-of-basis matrix from B to C, denoted PC←B, we need to express
each vector in B as a linear combination of vectors in C. That is, for each bi ∈ B, we
find coefficients aij such that

bi = ai1(2 + x) + ai2(x+ x2) + ai3(5 + x2)

Specifically, we solve for:

1. 1 = a11(2 + x) + a12(x+ x2) + a13(5 + x2)

2. x = a14(2 + x) + a15(x+ x2) + a16(5 + x2)

3. x2 = a17(2 + x) + a18(x+ x2) + a19(5 + x2)

By matching coefficients of like terms (1, x, and x2) on both sides of these equations,
we obtain the coefficients that form the change-of-basis matrix:

PC←B =

 1
7

5
7

−5
7

−1
7

2
7

5
7

1
7

−2
7

2
7
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3. Consider the vector space M2(R), the space of 2 × 2 matrices with real number en-
tries. We define two bases for M2(R):
- The standard basis B:

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
- Another basis C:

C =

{[
1 1
0 0

]
,

[
1 −1
0 0

]
,

[
0 0
1 1

]
,

[
0 0
1 −1

]}
To find the change-of-basis matrix PC←B from B to C, we express each matrix in B
as a linear combination of matrices in C. This involves solving for the coefficients
that express the basis elements of B in terms of the basis elements of C.

After solving for these coefficients, we obtain the change-of-basis matrix PC←B as:

PC←B =


1
2

1
2

0 0
1
2

−1
2

0 0
0 0 1

2
1
2

0 0 1
2

−1
2


This matrix, when applied to the coordinate vector of a matrix in B, yields the coor-
dinate vector of that matrix in C.

Remark. Given a vector space V and two bases B and C for V , the change-of-basis
matrix from B to C, denoted PC←B, transforms coordinate vectors relative to B into coor-
dinate vectors relative to C. Similarly, the change-of-basis matrix from C to B, denoted
PB←C , performs the inverse operation. This proof demonstrates that PC←B and PB←C are
indeed inverses of each other.

Proof. Let [v]B be the coordinate vector of a vector v ∈ V relative to the basis B, and let
[v]C be the coordinate vector of v relative to the basis C. By definition, we have:

[v]C = PC←B[v]B (1)

and
[v]B = PB←C [v]C (2)

Substituting Equation (1) into Equation (2), we get:

[v]B = PB←C(PC←B[v]B)

= (PB←CPC←B)[v]B

For this to be true for all v ∈ V , it must be that:

PB←CPC←B = I (3)
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where I is the identity matrix of appropriate size.

Similarly, by applying the change-of-basis matrices in the reverse order and following
a similar argument, we can show that:

PC←BPB←C = I (4)

Equations (3) and (4) together imply that PC←B and PB←C are inverses of each other.

The following is another property of change of basis matrices.

Theorem 8.5. Let V be a vector space with ordered bases A, B, and C. Then the change-of-basis
matrix from A to C, denoted by PC←A, can be expressed as the product of the change-of-basis
matrix from B to C, PC←B, and the change-of-basis matrix from A to B, PB←A. Formally, we
have:

PC←A = PC←BPB←A. (5)

Proof. Given any vector v ∈ V , let [v]A, [v]B, and [v]C denote the coordinate vectors of v
relative to bases A, B, and C, respectively. By the definition of a change-of-basis matrix,
we have:

[v]B = PB←A[v]A, (6)
[v]C = PC←B[v]B. (7)

Substituting (1) into (2), we get:

[v]C = PC←B(PB←A[v]A)

= (PC←BPB←A)[v]A.

Since [v]C = PC←A[v]A by definition, it follows that:

PC←A = PC←BPB←A. (8)

8.3 Row Space & Column Space

• The row space of a matrix A, denoted as rowspace(A), is the set of all possible linear
combinations of its row vectors. Formally, if A is a matrix with rows r1, r2, . . . , rm,
then:

rowspace(A) = span{r1, r2, . . . , rm}.

To find a basis for the row space of A, perform row reduction on A to obtain its row
echelon form (REF) or reduced row echelon form (RREF). The non-zero rows in the
REF or RREF form a basis for the row space of A.
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• The column space of a matrix A, denoted as columnspace(A), is the set of all pos-
sible linear combinations of its column vectors. Formally, if A is a matrix with
columns c1, c2, . . . , cn, then:

columnspace(A) = span{c1, c2, . . . , cn}.

To find a basis for the column space of A, identify the columns with leading 1s in
the REF or RREF of A. The corresponding columns in the original matrix A form a
basis for the column space of A.

• The nullity of a matrix A is defined as the dimension of the null space of A. The
null space of A, denoted as nullspace(A), is the set of all vectors x such that Ax = 0,
where 0 is the zero vector.

Formally, if A is an m× n matrix, then the nullity of A is given by:

nullity(A) = dim(nullspace(A))

Remark 1. For any m× n matrix A, we have

rowspace(AT ) = columnspace(A).

Remark 2. The dimension of the row space (or rank) of A equals the dimension of the
column space (or rank) of A. This is written as:

dim(rowspace(A)) = dim(columnspace(A)) = rank(A).

Example. Given the matrix B:

B =


1 2 −1 3
3 6 −3 5
1 2 −1 −1
5 10 −5 7


The RREF of matrix B is: 

1 2 −1 0
0 0 0 1
0 0 0 0
0 0 0 0


The row space of B can be represented by the non-zero rows obtained after converting

B into its reduced row echelon form (RREF). The basis for the row space of B is:{(
1 2 −1 0

)
,
(
0 0 0 1

)}
indicating that the dimension of the row space is 2.
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The column space of B is spanned by the columns of B corresponding to the leading
one positions in its RREF. The basis for the column space of B is:


1
3
1
5

 ,


3
5
−1
7




This also indicates that the dimension of the column space is 2.

Now, we have very important result indicating a relationship between rank and nul-
lity:

Theorem 8.6. Let A be an m × n matrix. Then the rank of A plus the nullity of A is equal to n,
the number of columns in A. Formally, this can be expressed as:

rank(A) + nullity(A) = n

Proof. Let A be an m × n matrix. First, we reduce A to its RREF, denoted as A′. In A′,
the number of pivot columns (i.e., columns containing a leading 1) equals the rank of A,
because these columns are linearly independent by construction.

The basis for the null space of A can be found by solving Ax = 0. Each free variable
in the system corresponds to one basis vector in the null space. Therefore, the number of
free variables, which equals the number of columns n minus the number of pivot columns
(the rank of A), gives the dimension of the null space, or the nullity of A.

Since every column in A′ is either a pivot column or associated with a free variable,
and since there are n columns in total, the sum of the number of pivot columns (the rank)
and the number of free variables (the nullity) must equal n. Hence,

rank(A) + nullity(A) = n.

This completes the proof of the Rank-Nullity Theorem.

Example. Recall the previous example, matrix B:

B =


1 2 −1 3
3 6 −3 5
1 2 −1 −1
5 10 −5 7


The RREF of matrix B is: 

1 2 −1 0
0 0 0 1
0 0 0 0
0 0 0 0


Since rank(B) = 2, by Rank-Nullity theorem, we get nullity(A) = 4 − rank(A) = 2.

Indeed, we have two free variables, say s, t, and the solutions for Bx = 0 are of the form
(t− 2s, s, t, 0), and {(1, 0, 1, 0), (−2, 1, 0, 0)} is a basis for the null space.
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Remark. For an m× n matrix A with real entries, let us summarize in the table below
the essential information relating nullspace(A), rowspace(A), colspace(A), Rm, and Rn:

Description Subspace of Dimension
nullspace(A) set of vectors x with Ax = 0 Rn nullity(A)
rowspace(A) span of the row vectors of A Rn rank(A)
colspace(A) span of the column vectors of A Rm rank(A)

Notice that rowspace(A) and colspace(A) both have the same dimension, rank(A), but
they occur as subspaces of different vectors, namely Rn and Rm, respectively.

The following problems are from the textbook (Section 4.9), and they are good for
applying rank-nullity theorem.

14. Show that a 3 × 7 matrix A with nullity(A) = 4 must have colspace(A) = R3. Is
rowspace(A) = R3?

15. Show that a 6 × 4 matrix A with nullity(A) = 0 must have rowspace(A) = R4. Is
colspace(A) = R4?

16. Prove that if rowspace(A) = nullspace(A), then A contains an even number of
columns.

Solution to Problem 14 By the Rank-Nullity Theorem, for a 3× 7 matrix A, we have:

rank(A) + nullity(A) = 7

Given that nullity(A) = 4, we find:

rank(A) = 7− 4 = 3

Since the rank of A corresponds to the dimension of the column space and A has 3
rows, colspace(A) is at most R3, and since the rank is 3, it spans R3. However, even if
rowspace(A) is three dimensional, it cannot be R3 because rowspace(A) is a subspace of
R7.

Solution to Problem 15 For the 6 × 4 matrix A, if nullity(A) = 0, it means there are no
free variables, and all columns include leading 1, so:

rank(A) = 4

Thus, rowspace(A) is R4 as it is spanned by 4 linearly independent row vectors. colspace(A)
cannot be R4 because columns are vectors in R6.

Solution to Problem 16 If rowspace(A) is equal to nullspace(A), then we have rank(A) =
nullity(A). By rank-nullity theorem, we have

rank(A) + nullity(A) = rank(A) + rank(A) = 2rank(A) = #ofcolumns

which makes #ofcolumns is an even number.
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