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9 Week 9

9.1 Invertible Matrix Theorem (V. 2)

Building on the introduced concepts of vector spaces, we can expand the list of char-
acteristics that describe invertible matrices by adding new statements.

Theorem 9.1 (Invertible Matrix Theorem). Let A be an n×n matrix. The following conditions
on A are equivalent:

1. A is invertible.

2. The equation Ax = b has a unique solution for every b in Rn.

3. The equation Ax = 0 has only the trivial solution x = 0.

4. rank(A) = n.

5. A can be expressed as a product of elementary matrices.

6. A is row-equivalent to In.

7. det(A) is nonzero.

8. nullity(A) = 0.

9. nullspace(A) = {0}.

10. The columns of A form a linearly independent set of vectors in Rn.

11. colspace(A) = Rn, that is, the columns of A span Rn.

12. The columns of A form a basis for Rn.

13. The rows of A form a linearly independent set of vectors in Rn.

14. rowspace(A) = Rn, that is, the rows of A span Rn.

15. The rows of A form a basis for Rn.

16. AT is invertible.
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Proofs for the new equivalences will not be provided, as they have been developed
from relations explored in prior topics and examples. Our focus will be on the application
of the Invertible Matrix Theorem (IMT).

As we cover new concepts in upcoming lectures, new ones will be added to this list.
The theorem unites various seemingly unrelated properties and concepts within linear
algebra, demonstrating that they are, in fact, different manifestations of the same under-
lying principle. This helps in understanding the interconnectedness of concepts such as
matrix invertibility, system solvability, linear independence, and determinants.

9.2 Linear Transformations

Linear transformations are fundamental operations in linear algebra that map vec-
tors from one vector space to another, preserving the operations of vector addition and
scalar multiplication. Intuitively, you can think of them as processes that transform vec-
tors in a way that maintains the "linearity" of the space—straight lines remain straight,
and the origin remains fixed. This means that the transformation of a sum of vectors is
the same as the sum of their transformations, and similarly for scalar multiples of vec-
tors. These properties make linear transformations versatile, serving as the mathematical
foundation for understanding rotations, scaling, shearing, and reflections in geometry, as
well as more abstract concepts in areas like computer graphics, quantum mechanics, and
machine learning. Essentially, they provide a structured framework for analyzing how
different spaces relate to each other and how data within those spaces can be manipu-
lated or interpreted.

Before we delve into defining linear transformations, it’s essential to revisit the con-
cept of a function, with our discussion specifically focused on vector spaces.

Definition 9.1. A function T from a vector space V to a vector space W is defined by a rule that
assigns to each element v in V exactly one element w in W . Here, V is called the domain of T ,
and W is the codomain. The notation T : V → W signifies that T maps elements from V to W ,
and for each v ∈ V , there exists a unique w ∈ W such that T (v) = w.

Examples.

• Let f : R2 → R2 be defined by f(x) = 2x, where x ∈ R2. This function scales every
vector in R2 by a factor of 2.

• Let k : R → R be defined by k(x) = x2, where x ∈ R.

• Let T : Mn(R) → R be defined by T (A) = det(A).

• Let f : R → R be a function defined by f(x) = some number greater than x. This
cannot be a function because we have, for example, f(2) = 3 and f(2) = 4.

We continue with a definition of a linear transformation between vector spaces.
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Definition 9.2. Let V and W be vector spaces over the same field F . A function T : V → W is
called a linear transformation if the following properties hold for all vectors u, v ∈ V and any
scalar a ∈ F :

1. T (u+ v) = T (u) + T (v)

2. T (a · v) = a · T (v)

Examples.

1. Consider the scaling transformation T : R3 → R3 defined by T (x) = 3x for all
x ∈ R3. To prove T is linear, we must show it preserves addition and scalar multi-
plication. Let u,v ∈ R2 and let c ∈ R.

T (u+ v) = 3(u+ v) = 3u+ 3v = T (u) + T (v).

T (cu) = 3(cu) = c(3u) = cT (u).

Since T satisfies both conditions, it is a linear transformation.

2. The trace of a square matrix A, denoted as tr(A) : Mn(R) → R, is defined as the sum
of its diagonal elements:

tr(A) =
n∑

i=1

aii

where A = [aij] is an n× n matrix.

Given two n× n matrices A and B, the trace of their sum is:

tr(A+B) =
n∑

i=1

(aii + bii) =
n∑

i=1

aii +
n∑

i=1

bii = tr(A) + tr(B)

For any scalar c and an n× n matrix A, the trace of the scalar multiple of A is:

tr(cA) =
n∑

i=1

(c · aii) = c ·
n∑

i=1

aii = c · tr(A)

Hence, the trace function satisfies both properties of a linear transformation, making
it a linear transformation.

3. Let S : P2(R) → R2 be a function defined by S(p(x)) = (p(2), p(4)) for p(x) ∈ P2(R).
We will prove that S is a linear transformation by verifying the following two prop-
erties for all p(x), q(x) ∈ P2(R) and any scalar c ∈ R:

S(p(x) + q(x)) = ((p+ q)(2), (p+ q)(4))

= (p(2) + q(2), p(4) + q(4))

= (p(2), p(4)) + (q(2), q(4))

= S(p(x)) + S(q(x))

3



S(c · p(x)) = ((cp)(2), (cp)(4))

= (c · p(2), c · p(4))
= c · (p(2), p(4))
= c · S(p(x))

Since S satisfies both necessary properties, S is a linear transformation.

Nonexamples.

1. Consider the function f : R → R defined by f(x) = |x|. Although f maps real
numbers to real numbers, it is not linear because it does not preserve addition or
scalar multiplication. For example f(1) = 1 and f(−1) = 1, so f(1) + f(−1) = 2, but
f(1 + (−1)) = f(0) = 0.

2. Consider the function T : R2 → R2 defined by T ((x1, x2)) = (cos(x1), x
2
2). We claim

that T is not a linear transformation. To demonstrate this, we need to show that T
fails to satisfy at least one of the two properties of linear transformations.

T (2(1, 0)) = T ((2, 0))

= (cos(2), 02)

= (cos(2), 0)

2T (1, 0) = 2(cos(1), 0)

= (2 cos(1), 2 · 0)
= (2 cos(1), 0)

Since cos(2) ̸= 2 cos(1), it follows that:

T (2(1, 0)) = (cos(2), 0) ̸= (2 cos(1), 0) = 2T (1, 0)

This calculation shows that the function T does not preserve the scalar multiplica-
tion, confirming that T is indeed not a linear transformation.

3. Consider the function T : R2 → R3 defined by T (a, b) = (a, b, 1). To test if T is a
linear transformation, let’s check the scalar multiplication.

For any scalar c ∈ R and vector (a, b) ∈ R2, we want

T (c(a, b)) = cT (a, b)

Computing both sides of the equation gives:

T (c(a, b)) = T (ca, cb) = (ca, cb, 1)
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And
cT (a, b) = c(a, b, 1) = (ca, cb, c)

Clearly,
(ca, cb, 1) ̸= (ca, cb, c)

unless c = 1. However, for a linear transformation, this equality must hold for all
scalars c, including c ̸= 1. Thus, T is not a linear transformation.

Remark. When you work on different vector spaces, you
should be careful about the notation. For example, if you have

T : M2(R) → R3, the inputs are 2 × 2 matrices
[
a b

c d

]
, and the

outputs are triples (x, y, z). As another example, if you have,
let say, S : Fun(R,R) → P3(R), then the inputs are arbitrary
functions f (x), but the outputs are polynomials p(x) = ax3 +
bx2 + cx + d. Before determining whether you have a linear
transformation or not, first check the domain and range, and
write the input and output terms accordingly.

We have the following properties of linear transformations.

Theorem 9.2. Let V and W be vector spaces over the same field F , and let T : V → W be a
function. Then T is a linear transformation if and only if

T (c1v1 + c2v2) = c1T (v1) + c2T (v2)

for all v1, v2 ∈ V and c1, c2 ∈ F .

Proof. (⇒) Suppose T is a linear transformation. Then by the definition of linearity, T
must satisfy two properties for any v, u ∈ V and any scalar a ∈ F :

1. T (u+ v) = T (u) + T (v)

2. T (a · v) = a · T (v)
Consider two vectors v1, v2 ∈ V and scalars c1, c2 ∈ F . By applying the definition of a

linear transformation, we have:

T (c1v1 + c2v2) = T (c1v1) + T (c2v2) = c1T (v1) + c2T (v2)

This shows that if T is a linear transformation, then T (c1v1 + c2v2) = c1T (v1)+ c2T (v2).

(⇐) Conversely, assume that T (c1v1 + c2v2) = c1T (v1) + c2T (v2) for all v1, v2 ∈ V and
c1, c2 ∈ F . To show that T is linear, we need to verify the following properties.
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1) Let v1, v2 ∈ V . Setting c1 = c2 = 1, we get

T (v1 + v2) = T (1 · v1 + 1 · v2) = 1T (v1) + 1T (v2) = T (v1) + T (v2).

2) Let v ∈ V and c ∈ F . Setting v2 = 0 (the zero vector in V ) and c2 = 0, we have
T (c · v + 0 · 0) = cT (v) + 0T (0) = cT (v), since T (0) = 0 in W .

Hence, T is a linear transformation.

Proposition 9.3. Let V and W be vector spaces over the same field, and let T : V → W be a
linear transformation. Then:

1. T (0V ) = 0W .

2. T (−v) = −T (v) for any v ∈ V .

Proof. 1. Let 0V be the zero vector in V . Since T is linear, for any scalar c, we have
T (c · 0V ) = c · T (0V ). Choosing c = 0, we get:

T (0 · 0V ) = 0 · T (0V ) = 0W

where 0W is the zero vector in W . Since 0 · 0V = 0V , it follows that:

T (0V ) = 0W

Thus, T maps the zero vector of V to the zero vector of W .

2. Let v be any vector in V , and let −v be its additive inverse, so v + (−v) = 0V .
Applying T to both sides of the equation and using the linearity (additivity) of T , we get:

T (v + (−v)) = T (0V ) = 0W

Using the additivity property of T , we have:

T (v) + T (−v) = 0W

This shows that T (−v) is the additive inverse of T (v) in W , namely, T (−v) = −T (v).

Remark. Theorem 9.2 is simpler way to show if T is a linear transformation. Thus,
you can use either the definition (show T preserves addition and scalar multiplication) or
the shorter way (show the equation in Theorem 9.2).

On the other hand, Proposition 9.3 is useful if you have non-linear transformation.
Indeed, if T does not preserve the zero vector or the additive inverses, you can directly
say that T is not a linear transformation.

Examples.
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1. The function T : P2(R) → R defined by T (ax2+bx+c) = a is a linear transformation.

To prove that T is a linear transformation, we must show that for any polynomials
p1(x) = a1x

2 + b1x + c1 and p2(x) = a2x
2 + b2x + c2 in P2(R), and for any scalars

d1, d2 ∈ R, the following condition holds:

T (d1p1(x) + d2p2(x)) = d1T (p1(x)) + d2T (p2(x))

Consider p1(x) = a1x
2 + b1x+ c1 and p2(x) = a2x

2 + b2x+ c2. Then,

d1p1(x)+d2p2(x) = d1(a1x
2+b1x+c1)+d2(a2x

2+b2x+c2) = (d1a1+d2a2)x
2+(other terms)

Applying T to this sum, we get:

T ((d1a1 + d2a2)x
2 + other terms) = d1a1 + d2a2

On the other hand,

d1T (p1(x)) + d2T (p2(x)) = d1a1 + d2a2

Therefore,
T (d1p1(x) + d2p2(x)) = d1T (p1(x)) + d2T (p2(x))

This proves that T satisfies the linearity condition for all polynomials p1(x), p2(x) ∈
P2(R) and scalars d1, d2 ∈ R, and hence T is a linear transformation.

2. Let Mn(R) denote the space of all n×n matrices with real entries, and let B be a fixed
matrix in Mn(R). The function S : Mn(R) → Mn(R) defined by S(A) = AB − BA is
a linear transformation.

To prove that S is a linear transformation, we need to show that for any matrices
A1, A2 ∈ Mn(R) and any scalars c1, c2 ∈ R, the following property holds:

S(c1A1 + c2A2) = c1S(A1) + c2S(A2)

Start by evaluating the left side of the equation:

S(c1A1 + c2A2) = (c1A1 + c2A2)B −B(c1A1 + c2A2)

= c1A1B + c2A2B − c1BA1 − c2BA2

= c1(A1B −BA1) + c2(A2B −BA2)

= c1S(A1) + c2S(A2)

This calculation demonstrates that S satisfies the linearity condition, showing that
S(c1A1+c2A2) = c1S(A1)+c2S(A2) for any A1, A2 ∈ Mn(R) and any scalars c1, c2 ∈ R.

3. The function U : R3 → R2 defined by U(x, y, z) = (x + 3y + z, x − y) is a linear
transformation.

To prove U is linear, we need to show that for any vectors v1 = (x1, y1, z1), v2 =
(x2, y2, z2) ∈ R3 and scalars c1, c2 ∈ R,

U(c1v1 + c2v2) = c1U(v1) + c2U(v2).
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First, compute the left-hand side (LHS):

U(c1v1 + c2v2) = U(c1(x1, y1, z1) + c2(x2, y2, z2))

= U((c1x1 + c2x2, c1y1 + c2y2, c1z1 + c2z2))

= (c1x1 + c2x2 + 3(c1y1 + c2y2) + (c1z1 + c2z2),

c1x1 + c2x2 − (c1y1 + c2y2))

= (c1(x1 + 3y1 + z1) + c2(x2 + 3y2 + z2),

c1(x1 − y1) + c2(x2 − y2)).

Now, compute the right-hand side (RHS):

c1U(v1) + c2U(v2) = c1U(x1, y1, z1) + c2U(x2, y2, z2)

= c1(x1 + 3y1 + z1, x1 − y1) + c2(x2 + 3y2 + z2, x2 − y2)

= (c1(x1 + 3y1 + z1) + c2(x2 + 3y2 + z2),

c1(x1 − y1) + c2(x2 − y2)).

Since the LHS and RHS are equal,

U(c1v1 + c2v2) = c1U(v1) + c2U(v2),

it follows that U satisfies the condition for a linear transformation. Therefore, U is
indeed a linear transformation.

Nonexamples.

1. The function T : M2(R) → R defined by T (A) = det(A), where A is a 2× 2 matrix, is
not a linear transformation.

Consider the 2× 2 identity matrix I2:

I2 =

(
1 0
0 1

)
The determinant of I2 is T (I2) = det(I2) = 1.

Now, consider the matrix −I2, which is the matrix I2 multiplied by −1:

−I2 = −1 · I2 =
(
−1 0
0 −1

)
The determinant of −I2 is T (−I2) = det(−I2) = (−1)(−1) − (0)(0) = 1. According
to the preservation of additive inverses, we would expect that T (−I2) = −T (I2).
However, we have:

T (−I2) = 1 ̸= −1 = −T (I2)

Therefore, T is not a linear transformation.
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2. The function S : P1(R) → R, defined by S(ax + b) = b + 1 for any polynomial
ax+ b ∈ P1(R), where a, b ∈ R, is not a linear transformation.

Evaluating S at the zero polynomial, we have:

S(0x+ 0) = S(0) = 0 + 1 = 1

However, for S to be a linear transformation, we require S(0) = 0. Since S(0) = 1 ̸=
0, this demonstrates that S is not a linear transformation.

3. The function T : R2 → M2(R) defined by T (a, b) =

(
a2 b2

0 1

)
for any (a, b) ∈ R2 is

not a linear transformation.

Consider the zero vector in R2, which is 0 = (0, 0). Applying the function T to this
vector yields:

T (0, 0) = T (0) =

(
0 0
0 1

)
However, the zero matrix in M2(R) is:

0 =

(
0 0
0 0

)

Clearly, T (0, 0) ̸= 0 because
(
0 0
0 1

)
̸=

(
0 0
0 0

)
.

This shows that T does not satisfy the property T (0) = 0 for linear transformations.
Therefore, T is not a linear transformation.

9.3 Linear Transformations from Rn to Rm

Linear transformations from Rn to Rm are crucial in both the study and application of
linear algebra. The following is the main example of such transformations.

Let A be an m × n matrix, then T : Rn → Rm defined by T (x) = Ax is a linear
transformation. Indeed, we have

T (x+ y) = A(x+ y) = Ax+ Ay = T (x) + T (y),

T (cx) = A(cx) = cAx = cT (x).

This linear transformation is called matrix transformation.
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Example. Let A =


2 1
3 4
0 5
−1 3

, then T : R2 → R4 given by T (x) = Ax is a transformation,

we can expand it as 
2 1
3 4
0 5
−1 3

[
x
y

]
=


2x+ y
3x+ 4y

5y
−x+ 3y

 .

Thus, we can also write the transformation as

T ((x, y)) = (2x+ y, 3x+ 4, 5y,−x+ 3y).

The distinctive feature of the linear transformations from Rn to Rm is that any such
transformation is a matrix transformation. We have the following theorem.

Theorem 9.4. Let T : Rn → Rm be a linear transformation. Then T is described by the matrix
transformation

T (x) = Ax

where A is the m× n matrix

A = [T (e1) T (e2) . . . T (en)]

and e1, e2, . . . , en denote the standard basis vector in Rn.

Proof. Consider any vector x ∈ Rn which can be expressed as a linear combination of the
standard basis vectors e1, e2, . . . , en. That is,

x = x1e1 + x2e2 + · · ·+ xnen,

where x1, x2, . . . , xn are the components of x.

Since T is linear, by the properties of linearity, we have

T (x) = T (x1e1 + x2e2 + · · ·+ xnen)

= x1T (e1) + x2T (e2) + · · ·+ xnT (en).

Each T (ei) is a vector in Rm, and these vectors can be used as columns to form the
m×n matrix A. Hence, the equation above represents the matrix-vector product of A and
x, where

A = [T (e1) T (e2) . . . T (en)].

Therefore, for any vector x ∈ Rn, the image of x under the transformation T can be
computed as the matrix-vector product Ax, proving that T is indeed represented by the
matrix A.
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Examples.

1. For T (x1, x2) = (3x1 − 2x2, x1 + 5x2),

T (e1) = T (1, 0) = (3 · 1− 2 · 0, 1 · 1 + 5 · 0) = (3, 1),

T (e2) = T (0, 1) = (3 · 0− 2 · 1, 1 · 0 + 5 · 1) = (−2, 5).

Thus, the matrix A is:

A =
[
T (e1) T (e2)

]
=

[
3 −2
1 5

]
.

2. For T (x1, x2) = (x1 + 3x2, 2x1 − 7x2, x1),

T (e1) = T (1, 0) = (1 + 3 · 0, 2 · 1− 7 · 0, 1) = (1, 2, 1),

T (e2) = T (0, 1) = (0 + 3 · 1, 2 · 0− 7 · 1, 0) = (3,−7, 0).

The matrix A is:

A =
[
T (e1) T (e2)

]
=

1 3
2 −7
1 0

 .

3. For T (x1, x2, x3) = (x1 − x2 + x3, x3 − x1),

T (e1) = T (1, 0, 0) = (1− 0 + 0, 0− 1) = (1,−1),

T (e2) = T (0, 1, 0) = (0− 1 + 0, 0− 0) = (−1, 0),

T (e3) = T (0, 0, 1) = (0− 0 + 1, 1− 0) = (1, 1).

The matrix A is:

A =
[
T (e1) T (e2) T (e3)

]
=

[
1 −1 1
−1 0 1

]
.

4. For T (x1, x2, x3) = x1 + 5x2 − 3x3,

T (e1) = T (1, 0, 0) = 1 · 1 + 5 · 0− 3 · 0 = 1,

T (e2) = T (0, 1, 0) = 1 · 0 + 5 · 1− 3 · 0 = 5,

T (e3) = T (0, 0, 1) = 1 · 0 + 5 · 0− 3 · 1 = −3.

The matrix A is:
A =

[
T (e1) T (e2) T (e3)

]
=

[
1 5 −3

]
.

5. For T (x1, x2, x3) = (x3 − x1,−x1, 3x1 + 2x3, 0),

T (e1) = T (1, 0, 0) = (0− 1,−1, 3 · 1 + 2 · 0, 0) = (−1,−1, 3, 0),

T (e2) = T (0, 1, 0) = (0− 0, 0, 3 · 0 + 2 · 0, 0) = (0, 0, 0, 0),

T (e3) = T (0, 0, 1) = (1− 0, 0, 3 · 0 + 2 · 1, 0) = (1, 0, 2, 0).

The matrix A is:

A =
[
T (e1) T (e2) T (e3)

]
=


−1 0 1
−1 0 0
3 0 2
0 0 0

 .
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