Elif Uskuplu

University of Southern California

1/22

Outline of The Talk

m Motivation for the experiment

m ——two-level and --cumulativity flags
m Exo-types, types, exo-equality (=°)

m Interplay between (=€) and Id-type (=)

2/22

Motivation

m Two-level type theory (2LTT)! addresses the problem that
certain higher-categorical structures cannot be suitably
encoded in HOTT (e.g. semisimplicial types).

m A recent work? about a general version of univalence
principle that applies to all set-based, categorical, and
higher-categorical structures, makes use of 2LTT.

m The authors of the work left the formalization of their
results as an open project. This is the current project® of
the speaker ©.

LACKS19. 2LTT and Applications. arXiv:1705.03307
2ANST21. The Univalence Principle. arXiv:2102.06275

3https://github.com/ElifUskuplu/2LTT-Agda
3/22

https://github.com/ElifUskuplu/2LTT-Agda

Experimental Flags in Agda

2LTT offers another kind of
universe for non-fibrant types.
In Agda, the flag -—-two-level
enables a new sort SSet of strict
types. With the usual sort Set,
we obtain a distinction between
fibrant and non-fibrant types.
Currently, there is no
documentation about the flag.

{-# OPTIONS --two-level #-}
open import Agda.Primitive public
--exo-universe of exotypes

uu® @ (i : Level) — sSet (lsuc i)
uu® 1 = sSet i

--universe of types
Uu : (i : Level) — Set (lsuc 1)
U i = Set i

4/22

Experimental Flags in Agda

As in the UP paper, it makes
sense to assume that any
fibrant type is a ‘non-fibrant’
type. In other words, we can
regard Set as a subtype of {-# OPTTONS --tuwo-level
SSet. In Agda, the flag eundtetivity
-—cumulativity enables this
property. Although, there is a
documentation about it, the
flag is still in progress and is
subject to change.

1ift : {i : Level} — uUU i uus i
Lift A=A

5/22

Experimental Flags in Agda

Il Using —-two-level and --cumulativity together causes
some undesired results which can be considered as bugs. For
the details, one can look at the issues 5948 and 5761 in Agda
Github*. We’ll discuss it later in details.

“https://github.com/agda/agda

6/22

Types & Exo-Types

m Following the notations in the UP paper, we refer to
non-fibrant types as exo-types® and reserve the word
type to refer to the fibrant ones.

m U/ stands for the universe of (fibrant) types, and U for the
universe of exo-types.

m Each type former is defined twice; one for types, one for
exo-types. Whenever it is needed, we make distinction
between them using the superscript —¢.

This term was originally suggested by Ulrik Buchholtz.
7/22

{-# OPTIONS --two-level #-}

--Type former of dependent pairs for exotypes

record Z¢ {1 j}
(A @ UUE i)
(B : A — UU® j) :
Uu® (i u j) where
constructor _,°_
field
pric : A
pr2¢ : B pri®

--Type former of dependent pairs for types
record £ {i j}
(A : UU 1)
(B : A — U3 =
U (i U j) where
constructor _,_

field
prli : A
pr2 : B pri

{-# OPTIONS --two-level
--cumulativity #-}

module

{1 : Level}

{A® : UU® 1} {B® : A® — UU® i}
{A :uw i} {B: A — UU i}
{c® : A® — UU i}

{C : A — UU® i} where

--These two are usual.

Type-1 = Z® A® B®

Type-2 = L A B

--These three are valid only
--when --cumulativity assumed.
Type-3 = Z* A B

Type-4 = I®* A C

Type-5 = If A® C®

--This is by no means valid.
Type-6 = I A° B®

8/ 22

Two notions of equality

m Exo-equality (=€)

m Usual identity type (=)

m If Ais a (fibrant) type and
a,b: A, we have a map
=®-to-=:a=°b— a =0, but
not vice-versa.

m We assume “the axiom of
uniqueness of identity proofs” for
=¢. Note that Agda allows us to
prove it because ——without-K
flag only disables this for Set but
still allows it for SSet.

{-# OPTIONS --without-K
--two-level
--cumulativity #-3}
--exo(strict)equality for exotypes
data _=%_ {i : Levell}{A : UU® i}
(x : A) : A — UU® L where
refl® : x =% x

UIP® : {1 : Level}{A : UU® i}{x y : A}
(Pg:x="y)—=p="gq
UIP® refl® refl® = refl®

--usual identity type
data _=_ {1 : Level}{A : UU i}
(x : A) : A — UU i where

refl : x X

--If two terms are exo-equal,

--they are also path equal.

=%-to-= : {1 : Level}{A : UU i}{x y : A}
< X =y - X=y

=¢-to-= refl® = refl

9/22

Details about the issue with flags

m Since 2LTT does not assume elimination from a fibrant
type to a non-fibrant one, we expect that we are not able
to define maps like N — N¢ and + — +° in Agda.

m For example, the possible inverse of =¢-to-= would
destroy the main motivation for 2LTT.

m With the power of ——two-level, Agda knows the
distinction between exo-types and types, and prevents
defining the maps we don’t desire.

m However, using —-cumulativity, we can lift a type to the
exo-universe that enables the maps we don’t expect.

m As Andreas Abel said
The sort of a type is no longer a well-defined concept.

10/ 22

{-# OPTIONS --two-level
--cumulativity #-}

IN®-to-IN : IN® —+ N
Ne-to-IN zere® = zero
Ne-to-IN (succ® n) = succ (IN®-to-IN n)

N-to-N® : N — N°®

IN-to-IN® n =

--Cannot eliminate fibrant type N

--unless target type is also fibrant

--when checking that the expression {}® has type IN°®

LiftIN : UU® lzero
IiftN = N

LTiftIN-to-IN® : 1iftlN — IN°®
LiftIN-to-IN® zero = zero®
LTiftIN-to-IN*® (succ n) = succ® (LiftIN-to-IN® n)

11/22

Two notions of equality

m Exo-equality should regarded as a sort of “metatheoretic”
or “syntactic” equality.

m Since exo-equality is assumed to satisfy UIP, we have all
exo-types are h-sets in terms of type hierarchy.

m We can define each operation related to equalities as usual,
but emphasizing the difference between =¢ and =.

m We assume function extensionality (funext) for both
equalities.

m We assume the univalence (UA) only for = because it is
incompatible with UIP.

12 /22

Exo-isomorphisms and Equivalences

m We say that a function f: A — B

between exotypes is an m In the formalization, we
exo-isomorphism if there is make use of funext.

g: B — Asuchthat go f=°1y4

and fog="1p. 8 7 e

{A : wue 3 {B : uu® 3}

m We say that a function f: A - B | ©: wuwe:wy

where

between (fibrant) types is an Lseewotso + (F i A 5 B) - (LU

. . . is-exo-iso f = 3¢ (B — A)
equivalence if there is g (et h) o (gt amea) s
gB%ASUChthathfElA e ((b :B) = (f-£g)b="b))

= I° (A — B) is-exo-iso

and fog=1p.

is-equiv : (f : C = D) — W (1 u j)

m Using =°-to-= it is easy to see tsequiv £ - £ (0 1 O
. . (Mg = ((c:C) = (g-Ff)c=cqc)x
that an exo-isomorphism between (0 0) — (F-o)d=d)
. = 1w (iuij)
(fibrant) types is also an S oric o) tsequty

equivalence.

13 /22

Fibrant Exo-types!

m We call an exo-type A : U°
fibrant if it is exo-isomorphic to
atype B : U.

m Clearly, every type is a fibrant
exo-type.

{-# OPTIONS --without-K
--two-level
--cumulativity #-}

record isFibrant {i : Level}(B : UU® i) :
uuve (lsuc i) where
constructor isfibrant
field
fibrant-match : UU i
fibrancy-witness : B = fibrant-match

--every type is fibrant

type-isFibrant : {i : Level} (A : UU 1)
— 1isFibrant A

type-isFibrant A = isfibrant A (id-iso A)

14 /22

Fibrant Maps!

mIf f: A— B isamap of fibrant
exo-types, we can lift to a map

between their fibrant matches

Aa—1L B

- —>
Fib-map(f)

m We call f equivalence if the lift
Fib-map(f) = o fo¢~!isan
equivalence.

Fib-map : {1 j : Level} {A : WU® i} {B : UU® j}
(P : isFibrant A) (Q : isFibrant B)
— (F : A — B)
— 1isFibrant.fibrant-match P
— 1isFibrant.fibrant-match Q

Fib-map {A = A} {B =B} P Q F = y - (F -* %)

¢t : isFibrant.fibrant-match P — A
¢™* = pri1® (pr2¢ (isFibrant.fibrancy-witness P))

: B — isFibrant.fibrant-match Q
= pri® (isFibrant.fibrancy-witness Q)

15 /22

Properties

m Fib-map(_) preserves identity maps and compositions.

m If f is an exo-isomorphism between fibrant exo-types, then
f is an equivalence.

m If f and g are homotopic maps between fibrant exo-types,
then f is an equivalence < g is.

m 2-out-of-3, 3-out-of-4 properties, etc.

m All these properties above are obtained thanks to =¢-to-=
conversion. The interplay between =° and = has many
other useful corollaries. One of these is a new kind of
function extensionality!

16 /22

Function Extensionality

Depending on taking a type (family) or an exo-type (family),
one can obtain a different []/[]-type.

mIf A:U and B: A — U, then we have [[, B : U and the

function extensionality wrt =.

mIf A:U° and B: A — U® we have [[B : U° and the

function extensionality wrt =°¢.

m What if A:U° and B : A — U? We still have the function
extensionality wrt =€, but for f, g : [[B, we also have

f(a) =p(a) 9(a).
Question : What can be derived from []7. , f(a) =p(q) 9(a)?

17 /22

Cofibrancy

m Recall that the funext for = is equivalent to that for any
B: A — U we have

[1,.41sContr(B(a)) — isContr ([[,.4 B(a)).
m In 2LTT, we have another notion weaker than fibrancy,
which is called cofibrancy.

An exo-type A : U is called cofibrant, if for any
B : A — U, the exo-type [[% B is fibrant, and moreover if
each B(a) is contractible, so is the fibrant match of [[% B.

m We can use the notion to give an answer for the previous
question.

18 /22

Nice example of the interplay between =¢ and =

Proposition.(Funext for cofibrant exo-types) Assume A : U€ is
a cofibrant exo-type and B : A — U. Let F'M be the fibrant
match of [[B, and 3 : [[% B — FM be the exo-isomorphism.
Then we have

[To.4 (f(a) =pa) 9(a)] = (B(f) =rum B(g)).

19 /22

module FUNEXT {i j : Levell}{A : UU® i}

{B : A — UU j} {P : isCofibrant {i} A j}
where

FM = n-fibrant-witness (P B)

a:FM = N°AB

B:nAB — FM

Ba : (X : FM) — (B fa) X =* X
ap : (X : MN®AB) — (a-®B) X =X
FEP : {f g : N® A B}

— ((x ¢+ A) — Id (f x) (g x))

— Id (B f) (B g)
FEP {f} {g} T =?

Y: AU J
¥Yx=ZI (Bx)(hy = Idy (f x))

f''g' :NFAY

f' x = (f x , refl)

g' x=(gx, (Tx)")

fibers-of-¥-is-contr : (x :

fibers-of-Y-is-contr x =
path-type-is-contr {j} {B x} (f x)

A) — is-contr (Y x)

WFEP = contr-preserve-witness (P Y)

Mtype = MN-fibrant-witness (P Y)

a' : NMNtype — N° A Y

B' : M A Y — Mtype

Ba' : (X : Ntype) — (B' ®a') X =% X
af' : (X :NFAY) — (a' ®FP') X =X

20 /22

p' s Id (B ') (B g")

p' = (pr2 (WFEP fibers-of-Y-is-contr) (B' f')) - ((pr2 (WFEP fibers-of-Y-is-contr) (B' g')) %)
p:Id (BF)(Ba)

p = =°-to-I1d (exo-ap B (funext® A a — exo-inv (exo-ap pri (happly® (aB' f') a))))

«(ap (Au — B (ha—pri((a' u)a))p' -
=-to-1d (exo-ap B (funext® A a — (exo-ap pr1 (happly® (aB' g') a)))))

21 /22

Thanks!

22 /22

