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Motivation

Two-level type theory (2LTT)1 addresses the problem that
certain higher-categorical structures cannot be suitably
encoded in HoTT (e.g. semisimplicial types).

A recent work2 about a general version of univalence
principle that applies to all set-based, categorical, and
higher-categorical structures, makes use of 2LTT.

The authors of the work left the formalization of their
results as an open project. This is the current project3 of
the speaker ,.

1ACKS19. 2LTT and Applications. arXiv:1705.03307
2ANST21. The Univalence Principle. arXiv:2102.06275
3https://github.com/ElifUskuplu/2LTT-Agda
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Experimental Flags in Agda

2LTT offers another kind of
universe for non-fibrant types.
In Agda, the flag --two-level

enables a new sort SSet of strict
types. With the usual sort Set,
we obtain a distinction between
fibrant and non-fibrant types.
Currently, there is no
documentation about the flag.
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Experimental Flags in Agda

As in the UP paper, it makes
sense to assume that any
fibrant type is a ‘non-fibrant’
type. In other words, we can
regard Set as a subtype of
SSet. In Agda, the flag
--cumulativity enables this
property. Although, there is a
documentation about it, the
flag is still in progress and is
subject to change.
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Experimental Flags in Agda

!!! Using --two-level and --cumulativity together causes
some undesired results which can be considered as bugs. For
the details, one can look at the issues 5948 and 5761 in Agda
Github4. We’ll discuss it later in details.

4https://github.com/agda/agda
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Types & Exo-Types

Following the notations in the UP paper, we refer to
non-fibrant types as exo-types5 and reserve the word
type to refer to the fibrant ones.

U stands for the universe of (fibrant) types, and Ue for the
universe of exo-types.

Each type former is defined twice; one for types, one for
exo-types. Whenever it is needed, we make distinction
between them using the superscript −e.

5This term was originally suggested by Ulrik Buchholtz.
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Example
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Two notions of equality

Exo-equality (=e)

Usual identity type (≡)

If A is a (fibrant) type and
a, b : A, we have a map
=e-to-≡ : a =e b→ a ≡ b, but
not vice-versa.

We assume “the axiom of
uniqueness of identity proofs” for
=e. Note that Agda allows us to
prove it because --without-K

flag only disables this for Set but
still allows it for SSet.
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Details about the issue with flags

Since 2LTT does not assume elimination from a fibrant
type to a non-fibrant one, we expect that we are not able
to define maps like N→ Ne and +→ +e in Agda.

For example, the possible inverse of =e-to-≡ would
destroy the main motivation for 2LTT.

With the power of --two-level, Agda knows the
distinction between exo-types and types, and prevents
defining the maps we don’t desire.

However, using --cumulativity, we can lift a type to the
exo-universe that enables the maps we don’t expect.

As Andreas Abel said
The sort of a type is no longer a well-defined concept.
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Details about the issue with flags
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Two notions of equality

Exo-equality should regarded as a sort of “metatheoretic”
or “syntactic” equality.

Since exo-equality is assumed to satisfy UIP, we have all
exo-types are h-sets in terms of type hierarchy.

We can define each operation related to equalities as usual,
but emphasizing the difference between =e and ≡.

We assume function extensionality (funext) for both
equalities.

We assume the univalence (UA) only for ≡ because it is
incompatible with UIP.
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Exo-isomorphisms and Equivalences

We say that a function f : A→ B
between exotypes is an
exo-isomorphism if there is
g : B → A such that g ◦ f =e 1A
and f ◦ g =e 1B.

We say that a function f : A→ B
between (fibrant) types is an
equivalence if there is
g : B → A such that g ◦ f ≡ 1A
and f ◦ g ≡ 1B.

Using =e-to-≡ it is easy to see
that an exo-isomorphism between
(fibrant) types is also an
equivalence.

In the formalization, we
make use of funext.
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Fibrant Exo-types!

We call an exo-type A : Ue
fibrant if it is exo-isomorphic to
a type B : U .

Clearly, every type is a fibrant
exo-type.
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Fibrant Maps!

If f : A→ B is a map of fibrant
exo-types, we can lift to a map
between their fibrant matches

A B

FA FB

φ φ−1 ψ ψ−1

f

Fib-map(f)

We call f equivalence if the lift
Fib-map(f) = ψ ◦ f ◦ φ−1 is an
equivalence.
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Properties

Fib-map( ) preserves identity maps and compositions.

If f is an exo-isomorphism between fibrant exo-types, then
f is an equivalence.

If f and g are homotopic maps between fibrant exo-types,
then f is an equivalence ⇔ g is.

2-out-of-3, 3-out-of-4 properties, etc.

All these properties above are obtained thanks to =e-to-≡
conversion. The interplay between =e and ≡ has many
other useful corollaries. One of these is a new kind of
function extensionality!

16 / 22



Function Extensionality

Depending on taking a type (family) or an exo-type (family),
one can obtain a different

∏
/
∏e-type.

If A : U and B : A→ U , then we have
∏
AB : U and the

function extensionality wrt ≡.

If A : Ue and B : A→ Ue, we have
∏e
AB : Ue and the

function extensionality wrt =e.

What if A : Ue and B : A→ U? We still have the function
extensionality wrt =e, but for f, g :

∏e
AB, we also have

f(a) ≡B(a) g(a).

Question : What can be derived from
∏e
a:A f(a) ≡B(a) g(a)?
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Cofibrancy

Recall that the funext for ≡ is equivalent to that for any
B : A→ U we have∏

a:A isContr(B(a))→ isContr (
∏
a:AB(a)).

In 2LTT, we have another notion weaker than fibrancy,
which is called cofibrancy.

An exo-type A : Ue is called cofibrant, if for any
B : A→ U , the exo-type

∏e
AB is fibrant, and moreover if

each B(a) is contractible, so is the fibrant match of
∏e
AB.

We can use the notion to give an answer for the previous
question.
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Nice example of the interplay between =e and ≡

Proposition.(Funext for cofibrant exo-types) Assume A : Ue is
a cofibrant exo-type and B : A→ U . Let FM be the fibrant
match of

∏e
AB, and β :

∏e
AB → FM be the exo-isomorphism.

Then we have[∏e
a:A

(
f(a) ≡B(a) g(a)

)]
→ (β(f) ≡FM β(g)).
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Proof
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Proof
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Thanks!
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