# Exam 1

## In-class

- You will have **50 minutes** to complete this exam.
- This exam is printed double sided.
- This exam will be scanned. Please use only regular pencil or black ink.
- Do **NOT** detach this cover sheet from the exam.
- There is a blank page at the end of the test; it may be detached and used as scratch paper.
- During this exam, you may only use the scratch paper and writing utensils. **No calculators**, cell phones, books, notes or other resources will be permitted.
- **Multiple Choice**: No justification necessary. No partial credit. Fill in the bubble for your answer.
- Short Answer: No justification necessary. No partial credit. Write your answer in the box.
- Free Response: You must justify your solution to receive full credit on a problem. Any of your classmates should be able to understand how you arrived at your solution. Partial credit will be granted for work that demonstrates understanding of key concepts.
- You can do it!

### POINT DISTRIBUTION

Short Answer: 3 problems  $\times$  10 points each = 30 points Multiple Choice: 3 problems  $\times$  10 points each = 30 points Free Response: 3 problems; 10+10+20 = 40 points Total: 100 points This page intentionally left blank.

#### SHORT ANSWER

You do **NOT** need to justify your solutions in this section. Simply write your answer in the box. Each problem is worth ten (10) points.

**Problem 1.** Determine if the following function is even, odd, or neither:

$$f(x) = |x| - x^2 + 4$$

Recall that |x| is the absolute value of x.



**Problem 2.** Find the intervals on which the function F given below is continuous.

$$F(x) = \frac{\ln x}{x^2 - 4x + 3}$$

**Problem 3.** Determine whether f(x) = 3 - 2x is increasing or decreasing on  $(-\infty, \infty)$ .

#### Multiple Choice

You do **NOT** need to justify your solutions in this section. Simply fill in the circle that corresponds to your answer. Each problem is worth ten (10) points.

**Problem 4.** Let g(x) and f(x) be two continuous functions on an interval *I*. Which of the following functions is NOT always continuous on *I*?

$$\widehat{A} f(x) + g(x)$$

$$\widehat{B} 2g(x)$$

$$\widehat{C} f^2(x) + g(x)f(x)$$

$$\widehat{D} \frac{f(x)}{g(x)}$$

$$\widehat{E} 5g(x) - f(x) + 1$$

Problem 5. Find 
$$\lim_{x \to 0} \frac{\sqrt{4+x} - \sqrt{4-x}}{x^2 + x}$$
.  
(A)  $\infty$  (B) 0 (C) 1  
(D)  $\frac{1}{2}$  (E)  $-\infty$  (F) Does not exist and not  $\pm \infty$ 

**Problem 6.** Which of the following statements is FALSE for a one-to-one function f(x) on an interval [0, 5]?

(A) 
$$f^{-1}$$
 exists  
(B)  $f(1) \neq f(4)$   
(C)  $f(x_1) = f(x_2)$  for all  $x_1, x_2$  in [0, 5]  
(D)  $f(x_1) \neq f(x_2)$  whenever  $x_1 \neq x_2$  in [0, 5]  
(E) If  $f(2) = 10$ , then  $f^{-1}(10) = 2$ .

#### Free Response

For each of the questions in this section, you must **provide justification** for your answers.

**Problem 7.** (10 points) Show that the equation  $\log_5 x = 3 - x$  has at least one real solution.

!!!A useful reminder: for all positive numbers a, we have  $\log_a a = 1$  and  $\log_a 1 = 0$ .

**Problem 8.** (10 points) Find the horizontal and vertical asymptotes of f where

$$f(x) = \frac{7x+8}{3-x}.$$

**Problem 9.** (20 points) No explanation is required for either part. Draw a graph of a function that satisfies **all** of the following conditions.

(i)  $\lim_{x \to -\infty} f(x) = -3$ (iv)  $\lim_{x \to 1^+} f(x) = 1$ (ii)  $\lim_{x \to -2} f(x) = \infty$ (v) f(1) = 2(iii)  $\lim_{x \to 1^-} f(x) = -2$ (vi)  $\lim_{x \to \infty} f(x) = 3$ 



Scratch Page

Scratch Page