Exam 2

In-class

- You will have **50 minutes** to complete this exam.
- This exam is printed double sided.
- This exam will be scanned. Please use only regular pencil or black ink.
- Do **NOT** detach this cover sheet from the exam.
- There is a blank page at the end of the test; it may be detached and used as scratch paper.
- During this exam, you may only use the scratch paper and writing utensils. No calculators, cell phones, books, notes or other resources will be permitted.
- **Multiple Choice**: No justification necessary. No partial credit. Fill in the bubble for your answer.
- Short Answer: No justification necessary. No partial credit. Write your answer in the box.
- Free Response: You must justify your solution to receive full credit on a problem. Any of your classmates should be able to understand how you arrived at your solution. Partial credit will be granted for work that demonstrates understanding of key concepts.
- You can do it!

POINT DISTRIBUTION

Short Answer: 4 problems \times 10 points each = 40 points Multiple Choice: 3 problems \times 10 points each = 30 points Free Response: 3 problems \times 10 points each = 30 points Total: 100 points

SHORT ANSWER

You do **NOT** need to justify your solutions in this section. Simply write your answer in the box. Each problem is worth ten (10) points.

Problem 1. Suppose the tangent line equation to the curve y = f(x) at (1, 4) is y = 3x + 1. What is f'(1) = ?

Problem 2. Suppose a given function G(x) is differentiable at 3. How can you define G'(3)?

Problem 3. Let f(x), g(x), and h(x) be differentiable functions. Find the derivative of $(f \circ g)(x) + (h(x))^2$.

Problem 4. Find the limit

Multiple Choice

You do **NOT** need to justify your solutions in this section. Simply fill in the circle that corresponds to your answer. Each problem is worth ten (10) points.

Problem 5. The graph of f(x) is given below. At which point, f is differentiable?

Problem 6. Which of the following is the derivative of $4^{\cos x}$?

$$\begin{array}{c} (\underline{\mathbf{A}}) \cos x \cdot 4^{\cos x - 1} \\ (\underline{\mathbf{D}}) - \ln 4 \cdot 4^{\cos x} \cdot \sin x \\ (\underline{\mathbf{C}}) \ln 4 \cdot 4^{\cos x} \cdot \sin x \\ (\underline{\mathbf{E}}) 4^{-\sin x} \end{array}$$

Problem 7. Which of the following is the derivative of $\ln(x^3 + x)$ at x = 1?

 $(A) 4 \qquad (B) 2 \qquad (C) 0 \qquad (D) 1/2 \qquad (E) 1$

FREE RESPONSE

For each of the questions in this section, you must **provide justification** for your answers.

Problem 8. Find the equation of the tangent line to the curve

$$y = \cos(5x) + \sin(8x)$$

at the point (0, 1). Recall that $\cos(0) = 1$, $\sin(0) = 0$.

Problem 9. The length (l) of a rectangle *increases* by 3 ft/min while the width (w) decreases by 2 ft/min. When the length is 15 ft and the width is 40 ft, what is the rate of change of the area (A)? Recall the area of rectangle is $A = l \cdot w$.

Problem 10. Find y' and y'' where $x^2 + 4y^2 = 1$ using implicit differentiation. Simplify your answers as possible as you can.

Scratch Page

Scratch Page