Practice for midterm 1 | True — False | A is a 3×3 matrix such that A | $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ | = | $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ | and A | $\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$ | = | $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ | | |--------------|--|---|---|---|---------|--|---|---|--| | | Then A does not have an inverse | se. | | | | | | | | | | | | | | | | | | | True — False If A and B are diagonal $$n \times n$$ matrices, then $AB = BA$. True — False If $$A$$ and B are $n \times n$ matrices, and A is invertible, then AB is invertible. True — False If reduced row-echelon form of a matrix $$A$$ is the zero matrix, then A must be the zero matrix. True — False Suppose $$A$$ is a 3×5 matrix. Then $rank(A) = 3$. True — False Suppose $$A$$ is a 3×5 matrix. Then A **x** = **b** has a unique solution. True — False If an $$m \times n$$ system is inconsistent, then the reduced row-echelon form of the augmented matrix must have $n+1$ nonzero rows. True — False If a square matrix $$A$$ can be reduced to the identity matrix by row operations, then A is invertible. True — False If each element of an $$n \times n$$ matrix is doubled, then the determinant of the matrix also doubled. True — False If A and B are $$n \times n$$ matrices, then $det(AB) = det(BA)$. True — False For every positive integer $$n$$, $adj(I_n) = I_n$. True — False If $$A$$ is $n \times n$ matrix and c is a scalar, then $adj(cA) = c(adj(A))$. True — False If $$A$$ and B are matrix functions such that $A(0) = B(0)$, then A and B are the same matrices. True — False If $$A$$ and B are symmetric $n \times n$ matrices, then $A + B$ is also symmetric. True — False For any matrices $$A$$ and B of same dimensions, we have $$rank(A+B) = rank(A) + rank(B).$$ True — False If $$A$$ is a 5×5 matrix of rank 4, then A is not invertible. - 1. Consider the system of equations $A\mathbf{x} = \mathbf{b}$ where $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 9 & 6 \\ 7 & 10 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$. - (a) Write the augmented matrix. - (b) Reduce it into row-echelon form. - (c) Determine for which **b**, the system has no solutions. - 2. Write down the set of all solutions of the following system of linear equations $$x - y + z = 1$$ $$2x - y + z = 1$$ $$3x - 2y + 2z = 2.$$ - 3. Prove that if A and B are $n \times n$ diagonal matrices, then AB is also diagonal matrix. - 4. Suppose A and B are 2×2 matrices such that det(B) = 8 and $det(A^3) = det(B^2)$. Determine the value of $det(3A^TBA^{-1}B^{-1}A).$ - 5. Consider the matrix $A = \begin{bmatrix} 1 & 1 & 4 & 2 \\ 2 & 2 & 10 & 0 \\ 0 & 3 & 1 & 0 \\ 1 & 0 & 0 & 5 \end{bmatrix}$. Compute **only** the entry at the third row and the second column of $\operatorname{adj}(A)$. - 6. Consider the matrices $A = \begin{bmatrix} a & b & c \\ x & y & z \\ -3 & 7 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} x & y & z \\ -3 + bx & 7 + by & 2 + bz \\ a & b & c \end{bmatrix}$. Suppose $\det(A) = 3$. Find $\det(2B)$. - 7. Consider a linear system whose augmented matrix is of the form $$[A|\mathbf{b}] = \begin{bmatrix} 1 & 0 & -2 & | & a \\ 0 & 1 & a & | & a-3 \\ 0 & 0 & a-4 & | & a-3 \end{bmatrix}.$$ 2 - (a) For which values of a, the system has no solution? - (b) For which values of a, the system has a unique solution? - (c) For which values of *a*, the system has infinitely many solution? - 8. Consider the matrix $A = \begin{bmatrix} 2 & 0 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 1 \end{bmatrix}$. - (a) Find det(A). - (b) Compute AA^T . - (c) Determine A^{-1} if it exists. 9. A square matrix A is called *idempotent* if $A^2 = A$. Prove that if A is idempotent and invertible, then A must be the identity matrix. 10. Assume $$rank(A)=2$$ for the matrix $A=\begin{bmatrix} a & 1 & 2 \\ 1 & 1 & 1 \\ -1 & 1 & 1-a \end{bmatrix}$. Find the value of a . 11. Use Cramer's rule to solve $$2x = 6$$ $$2x + 2y + z = 5$$ $$4x + y + z = 11.$$ 12. Let $$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & a & 2 \end{bmatrix}$$. - (a) Find det(A). - (b) For which values of a, A is invertible? - (c) Use Gauss-Jordan method to find the inverse of A when a = -1.