Practice for midterm 1

True — False	A is a 3×3 matrix such that A	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	=	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	and A	$\begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$	=	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	
	Then A does not have an inverse	se.							

True — False If A and B are diagonal
$$n \times n$$
 matrices, then $AB = BA$.

True — False If
$$A$$
 and B are $n \times n$ matrices, and A is invertible, then AB is invertible.

True — False If reduced row-echelon form of a matrix
$$A$$
 is the zero matrix, then A must be the zero matrix.

True — False Suppose
$$A$$
 is a 3×5 matrix. Then $rank(A) = 3$.

True — False Suppose
$$A$$
 is a 3×5 matrix. Then A **x** = **b** has a unique solution.

True — False If an
$$m \times n$$
 system is inconsistent, then the reduced row-echelon form of the augmented matrix must have $n+1$ nonzero rows.

True — False If a square matrix
$$A$$
 can be reduced to the identity matrix by row operations, then A is invertible.

True — False If each element of an
$$n \times n$$
 matrix is doubled, then the determinant of the matrix also doubled.

True — False If A and B are
$$n \times n$$
 matrices, then $det(AB) = det(BA)$.

True — False For every positive integer
$$n$$
, $adj(I_n) = I_n$.

True — False If
$$A$$
 is $n \times n$ matrix and c is a scalar, then $adj(cA) = c(adj(A))$.

True — False If
$$A$$
 and B are matrix functions such that $A(0) = B(0)$, then A and B are the same matrices.

True — False If
$$A$$
 and B are symmetric $n \times n$ matrices, then $A + B$ is also symmetric.

True — False For any matrices
$$A$$
 and B of same dimensions, we have

$$rank(A+B) = rank(A) + rank(B).$$

True — False If
$$A$$
 is a 5×5 matrix of rank 4, then A is not invertible.

- 1. Consider the system of equations $A\mathbf{x} = \mathbf{b}$ where $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 9 & 6 \\ 7 & 10 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$.
 - (a) Write the augmented matrix.
 - (b) Reduce it into row-echelon form.
 - (c) Determine for which **b**, the system has no solutions.
- 2. Write down the set of all solutions of the following system of linear equations

$$x - y + z = 1$$
$$2x - y + z = 1$$
$$3x - 2y + 2z = 2.$$

- 3. Prove that if A and B are $n \times n$ diagonal matrices, then AB is also diagonal matrix.
- 4. Suppose A and B are 2×2 matrices such that det(B) = 8 and $det(A^3) = det(B^2)$. Determine the value of $det(3A^TBA^{-1}B^{-1}A).$
- 5. Consider the matrix $A = \begin{bmatrix} 1 & 1 & 4 & 2 \\ 2 & 2 & 10 & 0 \\ 0 & 3 & 1 & 0 \\ 1 & 0 & 0 & 5 \end{bmatrix}$. Compute **only** the entry at the third row and the second column of $\operatorname{adj}(A)$.
- 6. Consider the matrices $A = \begin{bmatrix} a & b & c \\ x & y & z \\ -3 & 7 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} x & y & z \\ -3 + bx & 7 + by & 2 + bz \\ a & b & c \end{bmatrix}$. Suppose $\det(A) = 3$. Find $\det(2B)$.
- 7. Consider a linear system whose augmented matrix is of the form

$$[A|\mathbf{b}] = \begin{bmatrix} 1 & 0 & -2 & | & a \\ 0 & 1 & a & | & a-3 \\ 0 & 0 & a-4 & | & a-3 \end{bmatrix}.$$

2

- (a) For which values of a, the system has no solution?
- (b) For which values of a, the system has a unique solution?
- (c) For which values of *a*, the system has infinitely many solution?
- 8. Consider the matrix $A = \begin{bmatrix} 2 & 0 & -3 \\ -1 & 1 & -1 \\ 2 & 2 & 1 \end{bmatrix}$.
 - (a) Find det(A).
 - (b) Compute AA^T .
 - (c) Determine A^{-1} if it exists.

9. A square matrix A is called *idempotent* if $A^2 = A$. Prove that if A is idempotent and invertible, then A must be the identity matrix.

10. Assume
$$rank(A)=2$$
 for the matrix $A=\begin{bmatrix} a & 1 & 2 \\ 1 & 1 & 1 \\ -1 & 1 & 1-a \end{bmatrix}$. Find the value of a .

11. Use Cramer's rule to solve

$$2x = 6$$

$$2x + 2y + z = 5$$

$$4x + y + z = 11.$$

12. Let
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & a & 2 \end{bmatrix}$$
.

- (a) Find det(A).
- (b) For which values of a, A is invertible?
- (c) Use Gauss-Jordan method to find the inverse of A when a = -1.