Pointwise order on finitely supported dependent functions #
This file lifts order structures on the α i
to Π₀ i, α i
.
Main declarations #
DFinsupp.orderEmbeddingToFun
: The order embedding from finitely supported dependent functions to functions.
Order structures #
def
DFinsupp.orderEmbeddingToFun
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[(i : ι) → LE (α i)]
:
(Π₀ (i : ι), α i) ↪o ((i : ι) → α i)
The order on DFinsupp
s over a partial order embeds into the order on functions
Equations
- DFinsupp.orderEmbeddingToFun = { toFun := DFunLike.coe, inj' := ⋯, map_rel_iff' := ⋯ }
Instances For
instance
DFinsupp.instPreorder
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[(i : ι) → Preorder (α i)]
:
Preorder (Π₀ (i : ι), α i)
Equations
- DFinsupp.instPreorder = Preorder.mk ⋯ ⋯ ⋯
instance
DFinsupp.instPartialOrder
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[(i : ι) → PartialOrder (α i)]
:
PartialOrder (Π₀ (i : ι), α i)
Equations
- DFinsupp.instPartialOrder = PartialOrder.mk ⋯
instance
DFinsupp.instSemilatticeInf
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[(i : ι) → SemilatticeInf (α i)]
:
SemilatticeInf (Π₀ (i : ι), α i)
Equations
- DFinsupp.instSemilatticeInf = SemilatticeInf.mk ⋯ ⋯ ⋯
@[simp]
theorem
DFinsupp.coe_inf
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[(i : ι) → SemilatticeInf (α i)]
(f : Π₀ (i : ι), α i)
(g : Π₀ (i : ι), α i)
:
theorem
DFinsupp.inf_apply
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[(i : ι) → SemilatticeInf (α i)]
(f : Π₀ (i : ι), α i)
(g : Π₀ (i : ι), α i)
(i : ι)
:
instance
DFinsupp.instSemilatticeSup
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[(i : ι) → SemilatticeSup (α i)]
:
SemilatticeSup (Π₀ (i : ι), α i)
Equations
- DFinsupp.instSemilatticeSup = SemilatticeSup.mk ⋯ ⋯ ⋯
@[simp]
theorem
DFinsupp.coe_sup
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[(i : ι) → SemilatticeSup (α i)]
(f : Π₀ (i : ι), α i)
(g : Π₀ (i : ι), α i)
:
theorem
DFinsupp.sup_apply
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[(i : ι) → SemilatticeSup (α i)]
(f : Π₀ (i : ι), α i)
(g : Π₀ (i : ι), α i)
(i : ι)
:
instance
DFinsupp.lattice
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → Zero (α i)]
[(i : ι) → Lattice (α i)]
:
Lattice (Π₀ (i : ι), α i)
Equations
- DFinsupp.lattice = Lattice.mk ⋯ ⋯ ⋯
Algebraic order structures #
instance
DFinsupp.instOrderedAddCommMonoid
{ι : Type u_1}
(α : ι → Type u_3)
[(i : ι) → OrderedAddCommMonoid (α i)]
:
OrderedAddCommMonoid (Π₀ (i : ι), α i)
Equations
instance
DFinsupp.instOrderedCancelAddCommMonoid
{ι : Type u_1}
(α : ι → Type u_3)
[(i : ι) → OrderedCancelAddCommMonoid (α i)]
:
OrderedCancelAddCommMonoid (Π₀ (i : ι), α i)
instance
DFinsupp.instContravariantClassHAddLe
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → OrderedAddCommMonoid (α i)]
[∀ (i : ι), ContravariantClass (α i) (α i) (fun (x1 x2 : α i) => x1 + x2) fun (x1 x2 : α i) => x1 ≤ x2]
:
ContravariantClass (Π₀ (i : ι), α i) (Π₀ (i : ι), α i) (fun (x1 x2 : Π₀ (i : ι), α i) => x1 + x2)
fun (x1 x2 : Π₀ (i : ι), α i) => x1 ≤ x2
Equations
- ⋯ = ⋯
instance
DFinsupp.instPosSMulMono
{ι : Type u_1}
{α : Type u_3}
{β : ι → Type u_4}
[Semiring α]
[Preorder α]
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → Preorder (β i)]
[(i : ι) → Module α (β i)]
[∀ (i : ι), PosSMulMono α (β i)]
:
PosSMulMono α (Π₀ (i : ι), β i)
Equations
- ⋯ = ⋯
instance
DFinsupp.instSMulPosMono
{ι : Type u_1}
{α : Type u_3}
{β : ι → Type u_4}
[Semiring α]
[Preorder α]
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → Preorder (β i)]
[(i : ι) → Module α (β i)]
[∀ (i : ι), SMulPosMono α (β i)]
:
SMulPosMono α (Π₀ (i : ι), β i)
Equations
- ⋯ = ⋯
instance
DFinsupp.instPosSMulReflectLE
{ι : Type u_1}
{α : Type u_3}
{β : ι → Type u_4}
[Semiring α]
[Preorder α]
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → Preorder (β i)]
[(i : ι) → Module α (β i)]
[∀ (i : ι), PosSMulReflectLE α (β i)]
:
PosSMulReflectLE α (Π₀ (i : ι), β i)
Equations
- ⋯ = ⋯
instance
DFinsupp.instSMulPosReflectLE
{ι : Type u_1}
{α : Type u_3}
{β : ι → Type u_4}
[Semiring α]
[Preorder α]
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → Preorder (β i)]
[(i : ι) → Module α (β i)]
[∀ (i : ι), SMulPosReflectLE α (β i)]
:
SMulPosReflectLE α (Π₀ (i : ι), β i)
Equations
- ⋯ = ⋯
instance
DFinsupp.instPosSMulStrictMono
{ι : Type u_1}
{α : Type u_3}
{β : ι → Type u_4}
[Semiring α]
[PartialOrder α]
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → PartialOrder (β i)]
[(i : ι) → Module α (β i)]
[∀ (i : ι), PosSMulStrictMono α (β i)]
:
PosSMulStrictMono α (Π₀ (i : ι), β i)
Equations
- ⋯ = ⋯
instance
DFinsupp.instSMulPosStrictMono
{ι : Type u_1}
{α : Type u_3}
{β : ι → Type u_4}
[Semiring α]
[PartialOrder α]
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → PartialOrder (β i)]
[(i : ι) → Module α (β i)]
[∀ (i : ι), SMulPosStrictMono α (β i)]
:
SMulPosStrictMono α (Π₀ (i : ι), β i)
Equations
- ⋯ = ⋯
instance
DFinsupp.instSMulPosReflectLT
{ι : Type u_1}
{α : Type u_3}
{β : ι → Type u_4}
[Semiring α]
[PartialOrder α]
[(i : ι) → AddCommMonoid (β i)]
[(i : ι) → PartialOrder (β i)]
[(i : ι) → Module α (β i)]
[∀ (i : ι), SMulPosReflectLT α (β i)]
:
SMulPosReflectLT α (Π₀ (i : ι), β i)
Equations
- ⋯ = ⋯
instance
DFinsupp.instOrderBot
{ι : Type u_1}
(α : ι → Type u_2)
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
:
OrderBot (Π₀ (i : ι), α i)
Equations
theorem
DFinsupp.bot_eq_zero
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
:
theorem
DFinsupp.le_iff'
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
[DecidableEq ι]
[(i : ι) → (x : α i) → Decidable (x ≠ 0)]
{f : Π₀ (i : ι), α i}
{g : Π₀ (i : ι), α i}
{s : Finset ι}
(hf : f.support ⊆ s)
:
theorem
DFinsupp.le_iff
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
[DecidableEq ι]
[(i : ι) → (x : α i) → Decidable (x ≠ 0)]
{f : Π₀ (i : ι), α i}
{g : Π₀ (i : ι), α i}
:
theorem
DFinsupp.support_monotone
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
[DecidableEq ι]
[(i : ι) → (x : α i) → Decidable (x ≠ 0)]
:
Monotone DFinsupp.support
theorem
DFinsupp.support_mono
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
[DecidableEq ι]
[(i : ι) → (x : α i) → Decidable (x ≠ 0)]
{f : Π₀ (i : ι), α i}
{g : Π₀ (i : ι), α i}
(hfg : f ≤ g)
:
f.support ⊆ g.support
instance
DFinsupp.decidableLE
{ι : Type u_1}
(α : ι → Type u_2)
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
[DecidableEq ι]
[(i : ι) → (x : α i) → Decidable (x ≠ 0)]
[(i : ι) → DecidableRel LE.le]
:
DecidableRel LE.le
Equations
- DFinsupp.decidableLE α x✝ x = decidable_of_iff (∀ i ∈ x✝.support, x✝ i ≤ x i) ⋯
@[simp]
theorem
DFinsupp.single_le_iff
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
[DecidableEq ι]
{f : Π₀ (i : ι), α i}
{i : ι}
{a : α i}
:
DFinsupp.single i a ≤ f ↔ a ≤ f i
instance
DFinsupp.tsub
{ι : Type u_1}
(α : ι → Type u_2)
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
[(i : ι) → Sub (α i)]
[∀ (i : ι), OrderedSub (α i)]
:
Sub (Π₀ (i : ι), α i)
This is called tsub
for truncated subtraction, to distinguish it with subtraction in an
additive group.
Equations
- DFinsupp.tsub α = { sub := DFinsupp.zipWith (fun (x : ι) (m n : α x) => m - n) ⋯ }
theorem
DFinsupp.tsub_apply
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
[(i : ι) → Sub (α i)]
[∀ (i : ι), OrderedSub (α i)]
(f : Π₀ (i : ι), α i)
(g : Π₀ (i : ι), α i)
(i : ι)
:
@[simp]
theorem
DFinsupp.coe_tsub
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
[(i : ι) → Sub (α i)]
[∀ (i : ι), OrderedSub (α i)]
(f : Π₀ (i : ι), α i)
(g : Π₀ (i : ι), α i)
:
instance
DFinsupp.instOrderedSub
{ι : Type u_1}
(α : ι → Type u_2)
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
[(i : ι) → Sub (α i)]
[∀ (i : ι), OrderedSub (α i)]
:
OrderedSub (Π₀ (i : ι), α i)
Equations
- ⋯ = ⋯
instance
DFinsupp.instCanonicallyOrderedAddCommMonoid
{ι : Type u_1}
(α : ι → Type u_2)
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
[(i : ι) → Sub (α i)]
[∀ (i : ι), OrderedSub (α i)]
:
CanonicallyOrderedAddCommMonoid (Π₀ (i : ι), α i)
@[simp]
theorem
DFinsupp.single_tsub
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
[(i : ι) → Sub (α i)]
[∀ (i : ι), OrderedSub (α i)]
{i : ι}
{a : α i}
{b : α i}
[DecidableEq ι]
:
DFinsupp.single i (a - b) = DFinsupp.single i a - DFinsupp.single i b
theorem
DFinsupp.support_tsub
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
[(i : ι) → Sub (α i)]
[∀ (i : ι), OrderedSub (α i)]
{f : Π₀ (i : ι), α i}
{g : Π₀ (i : ι), α i}
[DecidableEq ι]
[(i : ι) → (x : α i) → Decidable (x ≠ 0)]
:
theorem
DFinsupp.subset_support_tsub
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CanonicallyOrderedAddCommMonoid (α i)]
[(i : ι) → Sub (α i)]
[∀ (i : ι), OrderedSub (α i)]
{f : Π₀ (i : ι), α i}
{g : Π₀ (i : ι), α i}
[DecidableEq ι]
[(i : ι) → (x : α i) → Decidable (x ≠ 0)]
:
@[simp]
theorem
DFinsupp.support_inf
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CanonicallyLinearOrderedAddCommMonoid (α i)]
[DecidableEq ι]
{f : Π₀ (i : ι), α i}
{g : Π₀ (i : ι), α i}
:
@[simp]
theorem
DFinsupp.support_sup
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CanonicallyLinearOrderedAddCommMonoid (α i)]
[DecidableEq ι]
{f : Π₀ (i : ι), α i}
{g : Π₀ (i : ι), α i}
:
theorem
DFinsupp.disjoint_iff
{ι : Type u_1}
{α : ι → Type u_2}
[(i : ι) → CanonicallyLinearOrderedAddCommMonoid (α i)]
[DecidableEq ι]
{f : Π₀ (i : ι), α i}
{g : Π₀ (i : ι), α i}
: