Documentation

Mathlib.FieldTheory.PolynomialGaloisGroup

Galois Groups of Polynomials #

In this file, we introduce the Galois group of a polynomial p over a field F, defined as the automorphism group of its splitting field. We also provide some results about some extension E above p.SplittingField.

Main definitions #

Main results #

Other results #

def Polynomial.Gal {F : Type u_1} [Field F] (p : Polynomial F) :
Type u_1

The Galois group of a polynomial.

Equations
  • p.Gal = (p.SplittingField ≃ₐ[F] p.SplittingField)
instance Polynomial.Gal.instGroup {F : Type u_1} [Field F] (p : Polynomial F) :
Group p.Gal
Equations
instance Polynomial.Gal.instFintype {F : Type u_1} [Field F] (p : Polynomial F) :
Fintype p.Gal
Equations
instance Polynomial.Gal.instEquivLikeSplittingField {F : Type u_1} [Field F] (p : Polynomial F) :
EquivLike p.Gal p.SplittingField p.SplittingField
Equations
instance Polynomial.Gal.instAlgEquivClassSplittingField {F : Type u_1} [Field F] (p : Polynomial F) :
AlgEquivClass p.Gal F p.SplittingField p.SplittingField
theorem Polynomial.Gal.ext {F : Type u_1} [Field F] (p : Polynomial F) {σ τ : p.Gal} (h : xp.rootSet p.SplittingField, σ x = τ x) :
σ = τ

If p splits in F then the p.gal is trivial.

Equations
instance Polynomial.Gal.uniqueGalC {F : Type u_1} [Field F] (x : F) :
Unique (Polynomial.C x).Gal
Equations
instance Polynomial.Gal.uniqueGalXSubC {F : Type u_1} [Field F] (x : F) :
Unique (Polynomial.X - Polynomial.C x).Gal
Equations
instance Polynomial.Gal.instIsScalarTowerSplittingField {F : Type u_1} [Field F] (p : Polynomial F) (E : Type u_2) [Field E] [Algebra F E] [h : Fact (Polynomial.Splits (algebraMap F E) p)] :
IsScalarTower F p.SplittingField E
def Polynomial.Gal.restrict {F : Type u_1} [Field F] (p : Polynomial F) (E : Type u_2) [Field E] [Algebra F E] [Fact (Polynomial.Splits (algebraMap F E) p)] :
(E ≃ₐ[F] E) →* p.Gal

Restrict from a superfield automorphism into a member of gal p.

Equations
def Polynomial.Gal.mapRoots {F : Type u_1} [Field F] (p : Polynomial F) (E : Type u_2) [Field E] [Algebra F E] [Fact (Polynomial.Splits (algebraMap F E) p)] :
(p.rootSet p.SplittingField)(p.rootSet E)

The function taking rootSet p p.SplittingField to rootSet p E. This is actually a bijection, see Polynomial.Gal.mapRoots_bijective.

Equations
def Polynomial.Gal.rootsEquivRoots {F : Type u_1} [Field F] (p : Polynomial F) (E : Type u_2) [Field E] [Algebra F E] [Fact (Polynomial.Splits (algebraMap F E) p)] :
(p.rootSet p.SplittingField) (p.rootSet E)

The bijection between rootSet p p.SplittingField and rootSet p E.

Equations
instance Polynomial.Gal.galActionAux {F : Type u_1} [Field F] (p : Polynomial F) :
MulAction p.Gal (p.rootSet p.SplittingField)
Equations
instance Polynomial.Gal.smul {F : Type u_1} [Field F] (p : Polynomial F) (E : Type u_2) [Field E] [Algebra F E] [Fact (Polynomial.Splits (algebraMap F E) p)] :
SMul p.Gal (p.rootSet E)
Equations
theorem Polynomial.Gal.smul_def {F : Type u_1} [Field F] (p : Polynomial F) (E : Type u_2) [Field E] [Algebra F E] [Fact (Polynomial.Splits (algebraMap F E) p)] (ϕ : p.Gal) (x : (p.rootSet E)) :
instance Polynomial.Gal.galAction {F : Type u_1} [Field F] (p : Polynomial F) (E : Type u_2) [Field E] [Algebra F E] [Fact (Polynomial.Splits (algebraMap F E) p)] :
MulAction p.Gal (p.rootSet E)

The action of gal p on the roots of p in E.

Equations
theorem Polynomial.Gal.galAction_isPretransitive {F : Type u_1} [Field F] (p : Polynomial F) (E : Type u_2) [Field E] [Algebra F E] [Fact (Polynomial.Splits (algebraMap F E) p)] (hp : Irreducible p) :
MulAction.IsPretransitive p.Gal (p.rootSet E)
@[simp]
theorem Polynomial.Gal.restrict_smul {F : Type u_1} [Field F] {p : Polynomial F} {E : Type u_2} [Field E] [Algebra F E] [Fact (Polynomial.Splits (algebraMap F E) p)] (ϕ : E ≃ₐ[F] E) (x : (p.rootSet E)) :
((Polynomial.Gal.restrict p E) ϕ x) = ϕ x

Polynomial.Gal.restrict p E is compatible with Polynomial.Gal.galAction p E.

def Polynomial.Gal.galActionHom {F : Type u_1} [Field F] (p : Polynomial F) (E : Type u_2) [Field E] [Algebra F E] [Fact (Polynomial.Splits (algebraMap F E) p)] :
p.Gal →* Equiv.Perm (p.rootSet E)

Polynomial.Gal.galAction as a permutation representation

Equations
theorem Polynomial.Gal.galActionHom_restrict {F : Type u_1} [Field F] (p : Polynomial F) (E : Type u_2) [Field E] [Algebra F E] [Fact (Polynomial.Splits (algebraMap F E) p)] (ϕ : E ≃ₐ[F] E) (x : (p.rootSet E)) :
(((Polynomial.Gal.galActionHom p E) ((Polynomial.Gal.restrict p E) ϕ)) x) = ϕ x

gal p embeds as a subgroup of permutations of the roots of p in E.

def Polynomial.Gal.restrictDvd {F : Type u_1} [Field F] {p q : Polynomial F} (hpq : p q) :
q.Gal →* p.Gal

Polynomial.Gal.restrict, when both fields are splitting fields of polynomials.

Equations
theorem Polynomial.Gal.restrictDvd_def {F : Type u_1} [Field F] {p q : Polynomial F} [Decidable (q = 0)] (hpq : p q) :
Polynomial.Gal.restrictDvd hpq = if hq : q = 0 then 1 else Polynomial.Gal.restrict p q.SplittingField
def Polynomial.Gal.restrictProd {F : Type u_1} [Field F] (p q : Polynomial F) :
(p * q).Gal →* p.Gal × q.Gal

The Galois group of a product maps into the product of the Galois groups.

Equations
theorem Polynomial.Gal.mul_splits_in_splittingField_of_mul {F : Type u_1} [Field F] {p₁ q₁ p₂ q₂ : Polynomial F} (hq₁ : q₁ 0) (hq₂ : q₂ 0) (h₁ : Polynomial.Splits (algebraMap F q₁.SplittingField) p₁) (h₂ : Polynomial.Splits (algebraMap F q₂.SplittingField) p₂) :
Polynomial.Splits (algebraMap F (q₁ * q₂).SplittingField) (p₁ * p₂)
theorem Polynomial.Gal.splits_in_splittingField_of_comp {F : Type u_1} [Field F] (p q : Polynomial F) (hq : q.natDegree 0) :
Polynomial.Splits (algebraMap F (p.comp q).SplittingField) p

p splits in the splitting field of p ∘ q, for q non-constant.

def Polynomial.Gal.restrictComp {F : Type u_1} [Field F] (p q : Polynomial F) (hq : q.natDegree 0) :
(p.comp q).Gal →* p.Gal

Polynomial.Gal.restrict for the composition of polynomials.

Equations
theorem Polynomial.Gal.card_of_separable {F : Type u_1} [Field F] {p : Polynomial F} (hp : p.Separable) :
Fintype.card p.Gal = Module.finrank F p.SplittingField

For a separable polynomial, its Galois group has cardinality equal to the dimension of its splitting field over F.

theorem Polynomial.Gal.prime_degree_dvd_card {F : Type u_1} [Field F] {p : Polynomial F} [CharZero F] (p_irr : Irreducible p) (p_deg : Nat.Prime p.natDegree) :
p.natDegree Fintype.card p.Gal