Documentation

Mathlib.GroupTheory.GroupAction.Basic

Basic properties of group actions #

This file primarily concerns itself with orbits, stabilizers, and other objects defined in terms of actions. Despite this file being called basic, low-level helper lemmas for algebraic manipulation of belong elsewhere.

Main definitions #

def AddAction.orbit (M : Type u) [AddMonoid M] {α : Type v} [AddAction M α] (a : α) :
Set α

The orbit of an element under an action.

Equations
Instances For
    def MulAction.orbit (M : Type u) [Monoid M] {α : Type v} [MulAction M α] (a : α) :
    Set α

    The orbit of an element under an action.

    Equations
    Instances For
      theorem AddAction.mem_orbit_iff {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {a₁ : α} {a₂ : α} :
      a₂ AddAction.orbit M a₁ ∃ (x : M), x +ᵥ a₁ = a₂
      theorem MulAction.mem_orbit_iff {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {a₁ : α} {a₂ : α} :
      a₂ MulAction.orbit M a₁ ∃ (x : M), x a₁ = a₂
      @[simp]
      theorem AddAction.mem_orbit {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] (a : α) (m : M) :
      @[simp]
      theorem MulAction.mem_orbit {M : Type u} [Monoid M] {α : Type v} [MulAction M α] (a : α) (m : M) :
      @[simp]
      theorem AddAction.mem_orbit_self {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] (a : α) :
      @[simp]
      theorem MulAction.mem_orbit_self {M : Type u} [Monoid M] {α : Type v} [MulAction M α] (a : α) :
      theorem AddAction.orbit_nonempty {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] (a : α) :
      (AddAction.orbit M a).Nonempty
      theorem MulAction.orbit_nonempty {M : Type u} [Monoid M] {α : Type v} [MulAction M α] (a : α) :
      (MulAction.orbit M a).Nonempty
      theorem AddAction.mapsTo_vadd_orbit {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] (m : M) (a : α) :
      Set.MapsTo (fun (x : α) => m +ᵥ x) (AddAction.orbit M a) (AddAction.orbit M a)
      theorem MulAction.mapsTo_smul_orbit {M : Type u} [Monoid M] {α : Type v} [MulAction M α] (m : M) (a : α) :
      Set.MapsTo (fun (x : α) => m x) (MulAction.orbit M a) (MulAction.orbit M a)
      theorem AddAction.vadd_orbit_subset {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] (m : M) (a : α) :
      theorem MulAction.smul_orbit_subset {M : Type u} [Monoid M] {α : Type v} [MulAction M α] (m : M) (a : α) :
      theorem AddAction.orbit_vadd_subset {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] (m : M) (a : α) :
      theorem MulAction.orbit_smul_subset {M : Type u} [Monoid M] {α : Type v} [MulAction M α] (m : M) (a : α) :
      instance AddAction.instElemOrbit {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {a : α} :
      Equations
      instance MulAction.instElemOrbit {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {a : α} :
      Equations
      @[simp]
      theorem AddAction.orbit.coe_vadd {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {a : α} {m : M} {a' : (AddAction.orbit M a)} :
      (m +ᵥ a') = m +ᵥ a'
      @[simp]
      theorem MulAction.orbit.coe_smul {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {a : α} {m : M} {a' : (MulAction.orbit M a)} :
      (m a') = m a'
      theorem AddAction.orbit_addSubmonoid_subset {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] (S : AddSubmonoid M) (a : α) :
      theorem MulAction.orbit_submonoid_subset {M : Type u} [Monoid M] {α : Type v} [MulAction M α] (S : Submonoid M) (a : α) :
      theorem AddAction.mem_orbit_of_mem_orbit_addSubmonoid {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {S : AddSubmonoid M} {a : α} {b : α} (h : a AddAction.orbit (↥S) b) :
      theorem MulAction.mem_orbit_of_mem_orbit_submonoid {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {S : Submonoid M} {a : α} {b : α} (h : a MulAction.orbit (↥S) b) :
      theorem AddAction.fst_mem_orbit_of_mem_orbit {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {β : Type u_1} [AddAction M β] {x : α × β} {y : α × β} (h : x AddAction.orbit M y) :
      theorem MulAction.fst_mem_orbit_of_mem_orbit {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {β : Type u_1} [MulAction M β] {x : α × β} {y : α × β} (h : x MulAction.orbit M y) :
      theorem AddAction.snd_mem_orbit_of_mem_orbit {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {β : Type u_1} [AddAction M β] {x : α × β} {y : α × β} (h : x AddAction.orbit M y) :
      theorem MulAction.snd_mem_orbit_of_mem_orbit {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {β : Type u_1} [MulAction M β] {x : α × β} {y : α × β} (h : x MulAction.orbit M y) :
      theorem Finite.finite_addAction_orbit {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] [Finite M] (a : α) :
      (AddAction.orbit M a).Finite
      theorem Finite.finite_mulAction_orbit {M : Type u} [Monoid M] {α : Type v} [MulAction M α] [Finite M] (a : α) :
      (MulAction.orbit M a).Finite
      theorem AddAction.orbit_eq_univ (M : Type u) [AddMonoid M] {α : Type v} [AddAction M α] [AddAction.IsPretransitive M α] (a : α) :
      AddAction.orbit M a = Set.univ
      theorem MulAction.orbit_eq_univ (M : Type u) [Monoid M] {α : Type v} [MulAction M α] [MulAction.IsPretransitive M α] (a : α) :
      MulAction.orbit M a = Set.univ
      def AddAction.fixedPoints (M : Type u) [AddMonoid M] (α : Type v) [AddAction M α] :
      Set α

      The set of elements fixed under the whole action.

      Equations
      Instances For
        def MulAction.fixedPoints (M : Type u) [Monoid M] (α : Type v) [MulAction M α] :
        Set α

        The set of elements fixed under the whole action.

        Equations
        Instances For
          def AddAction.fixedBy {M : Type u} [AddMonoid M] (α : Type v) [AddAction M α] (m : M) :
          Set α

          fixedBy m is the set of elements fixed by m.

          Equations
          Instances For
            def MulAction.fixedBy {M : Type u} [Monoid M] (α : Type v) [MulAction M α] (m : M) :
            Set α

            fixedBy m is the set of elements fixed by m.

            Equations
            Instances For
              @[simp]
              theorem AddAction.mem_fixedPoints {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {a : α} :
              a AddAction.fixedPoints M α ∀ (m : M), m +ᵥ a = a
              @[simp]
              theorem MulAction.mem_fixedPoints {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {a : α} :
              a MulAction.fixedPoints M α ∀ (m : M), m a = a
              @[simp]
              theorem AddAction.mem_fixedBy {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {m : M} {a : α} :
              @[simp]
              theorem MulAction.mem_fixedBy {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {m : M} {a : α} :
              theorem AddAction.mem_fixedPoints' {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {a : α} :
              a AddAction.fixedPoints M α a'AddAction.orbit M a, a' = a
              theorem MulAction.mem_fixedPoints' {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {a : α} :
              a MulAction.fixedPoints M α a'MulAction.orbit M a, a' = a
              def AddAction.stabilizerAddSubmonoid (M : Type u) [AddMonoid M] {α : Type v} [AddAction M α] (a : α) :

              The stabilizer of a point a as an additive submonoid of M.

              Equations
              Instances For
                def MulAction.stabilizerSubmonoid (M : Type u) [Monoid M] {α : Type v} [MulAction M α] (a : α) :

                The stabilizer of a point a as a submonoid of M.

                Equations
                Instances For
                  @[simp]
                  theorem AddAction.mem_stabilizerAddSubmonoid_iff {M : Type u} [AddMonoid M] {α : Type v} [AddAction M α] {a : α} {m : M} :
                  @[simp]
                  theorem MulAction.mem_stabilizerSubmonoid_iff {M : Type u} [Monoid M] {α : Type v} [MulAction M α] {a : α} {m : M} :
                  def FixedPoints.submonoid (M : Type u) (α : Type v) [Monoid M] [Monoid α] [MulDistribMulAction M α] :

                  The submonoid of elements fixed under the whole action.

                  Equations
                  Instances For
                    @[simp]
                    theorem FixedPoints.mem_submonoid (M : Type u) (α : Type v) [Monoid M] [Monoid α] [MulDistribMulAction M α] (a : α) :
                    a FixedPoints.submonoid M α ∀ (m : M), m a = a
                    def FixedPoints.subgroup (M : Type u) (α : Type v) [Monoid M] [Group α] [MulDistribMulAction M α] :

                    The subgroup of elements fixed under the whole action.

                    Equations
                    Instances For

                      The notation for FixedPoints.subgroup, chosen to resemble αᴹ.

                      Equations
                      Instances For
                        @[simp]
                        theorem FixedPoints.mem_subgroup (M : Type u) (α : Type v) [Monoid M] [Group α] [MulDistribMulAction M α] (a : α) :
                        a FixedPoints.subgroup M α ∀ (m : M), m a = a
                        @[simp]

                        The additive submonoid of elements fixed under the whole action.

                        Equations
                        Instances For
                          @[simp]
                          theorem FixedPoints.mem_addSubmonoid (M : Type u) (α : Type v) [Monoid M] [AddMonoid α] [DistribMulAction M α] (a : α) :
                          a FixedPoints.addSubmonoid M α ∀ (m : M), m a = a

                          The additive subgroup of elements fixed under the whole action.

                          Equations
                          Instances For

                            The notation for FixedPoints.addSubgroup, chosen to resemble αᴹ.

                            Equations
                            Instances For
                              @[simp]
                              theorem FixedPoints.mem_addSubgroup (M : Type u) (α : Type v) [Monoid M] [AddGroup α] [DistribMulAction M α] (a : α) :
                              a α^+M ∀ (m : M), m a = a
                              @[simp]
                              theorem FixedPoints.addSubgroup_toAddSubmonoid (M : Type u) (α : Type v) [Monoid M] [AddGroup α] [DistribMulAction M α] :
                              (α^+M).toAddSubmonoid = FixedPoints.addSubmonoid M α
                              theorem smul_cancel_of_non_zero_divisor {M : Type u_1} {R : Type u_2} [Monoid M] [NonUnitalNonAssocRing R] [DistribMulAction M R] (k : M) (h : ∀ (x : R), k x = 0x = 0) {a : R} {b : R} (h' : k a = k b) :
                              a = b

                              smul by a k : M over a ring is injective, if k is not a zero divisor. The general theory of such k is elaborated by IsSMulRegular. The typeclass that restricts all terms of M to have this property is NoZeroSMulDivisors.

                              @[simp]
                              theorem AddAction.vadd_orbit {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (g : G) (a : α) :
                              @[simp]
                              theorem MulAction.smul_orbit {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (g : G) (a : α) :
                              @[simp]
                              theorem AddAction.orbit_vadd {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (g : G) (a : α) :
                              @[simp]
                              theorem MulAction.orbit_smul {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (g : G) (a : α) :

                              The action of an additive group on an orbit is transitive.

                              Equations
                              • =
                              instance MulAction.instIsPretransitiveElemOrbit {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (a : α) :

                              The action of a group on an orbit is transitive.

                              Equations
                              • =
                              theorem AddAction.orbit_eq_iff {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {a : α} {b : α} :
                              theorem MulAction.orbit_eq_iff {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {a : α} {b : α} :
                              theorem AddAction.mem_orbit_vadd {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (g : G) (a : α) :
                              theorem MulAction.mem_orbit_smul {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (g : G) (a : α) :
                              theorem AddAction.vadd_mem_orbit_vadd {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (g : G) (h : G) (a : α) :
                              theorem MulAction.smul_mem_orbit_smul {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (g : G) (h : G) (a : α) :
                              instance AddAction.instAddAction {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (H : AddSubgroup G) :
                              AddAction (↥H) α
                              Equations
                              instance MulAction.instMulAction {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (H : Subgroup G) :
                              MulAction (↥H) α
                              Equations
                              theorem AddAction.orbit_addSubgroup_subset {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (H : AddSubgroup G) (a : α) :
                              theorem MulAction.orbit_subgroup_subset {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (H : Subgroup G) (a : α) :
                              theorem AddAction.mem_orbit_of_mem_orbit_addSubgroup {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {H : AddSubgroup G} {a : α} {b : α} (h : a AddAction.orbit (↥H) b) :
                              theorem MulAction.mem_orbit_of_mem_orbit_subgroup {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {H : Subgroup G} {a : α} {b : α} (h : a MulAction.orbit (↥H) b) :
                              theorem AddAction.mem_orbit_symm {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {a₁ : α} {a₂ : α} :
                              a₁ AddAction.orbit G a₂ a₂ AddAction.orbit G a₁
                              theorem MulAction.mem_orbit_symm {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {a₁ : α} {a₂ : α} :
                              a₁ MulAction.orbit G a₂ a₂ MulAction.orbit G a₁
                              theorem AddAction.mem_addSubgroup_orbit_iff {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {H : AddSubgroup G} {x : α} {a : (AddAction.orbit G x)} {b : (AddAction.orbit G x)} :
                              a AddAction.orbit (↥H) b a AddAction.orbit H b
                              theorem MulAction.mem_subgroup_orbit_iff {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {H : Subgroup G} {x : α} {a : (MulAction.orbit G x)} {b : (MulAction.orbit G x)} :
                              a MulAction.orbit (↥H) b a MulAction.orbit H b
                              def AddAction.orbitRel (G : Type u_1) (α : Type u_2) [AddGroup G] [AddAction G α] :

                              The relation 'in the same orbit'.

                              Equations
                              Instances For
                                def MulAction.orbitRel (G : Type u_1) (α : Type u_2) [Group G] [MulAction G α] :

                                The relation 'in the same orbit'.

                                Equations
                                Instances For
                                  theorem AddAction.orbitRel_apply {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {a : α} {b : α} :
                                  theorem MulAction.orbitRel_apply {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {a : α} {b : α} :
                                  @[deprecated]
                                  theorem MulAction.orbitRel_r_apply {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {a : α} {b : α} :

                                  Alias of MulAction.orbitRel_apply.

                                  @[deprecated]
                                  theorem AddAction.orbitRel_r_apply {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {a : α} {b : α} :
                                  theorem MulAction.orbitRel_subgroup_le {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (H : Subgroup G) :
                                  theorem AddAction.orbitRel_addSubgroupOf {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (H : AddSubgroup G) (K : AddSubgroup G) :
                                  AddAction.orbitRel (↥(H.addSubgroupOf K)) α = AddAction.orbitRel (↥(H K)) α
                                  theorem MulAction.orbitRel_subgroupOf {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (H : Subgroup G) (K : Subgroup G) :
                                  MulAction.orbitRel (↥(H.subgroupOf K)) α = MulAction.orbitRel (↥(H K)) α
                                  theorem AddAction.quotient_preimage_image_eq_union_add {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (U : Set α) :
                                  Quotient.mk' ⁻¹' (Quotient.mk' '' U) = ⋃ (g : G), (fun (x : α) => g +ᵥ x) '' U

                                  When you take a set U in α, push it down to the quotient, and pull back, you get the union of the orbit of U under G.

                                  theorem MulAction.quotient_preimage_image_eq_union_mul {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (U : Set α) :
                                  Quotient.mk' ⁻¹' (Quotient.mk' '' U) = ⋃ (g : G), (fun (x : α) => g x) '' U

                                  When you take a set U in α, push it down to the quotient, and pull back, you get the union of the orbit of U under G.

                                  theorem AddAction.disjoint_image_image_iff {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {U : Set α} {V : Set α} :
                                  Disjoint (Quotient.mk' '' U) (Quotient.mk' '' V) xU, ∀ (g : G), g +ᵥ xV
                                  theorem MulAction.disjoint_image_image_iff {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {U : Set α} {V : Set α} :
                                  Disjoint (Quotient.mk' '' U) (Quotient.mk' '' V) xU, ∀ (g : G), g xV
                                  theorem AddAction.image_inter_image_iff {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (U : Set α) (V : Set α) :
                                  Quotient.mk' '' U Quotient.mk' '' V = xU, ∀ (g : G), g +ᵥ xV
                                  theorem MulAction.image_inter_image_iff {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (U : Set α) (V : Set α) :
                                  Quotient.mk' '' U Quotient.mk' '' V = xU, ∀ (g : G), g xV
                                  @[reducible, inline]
                                  abbrev AddAction.orbitRel.Quotient (G : Type u_1) (α : Type u_2) [AddGroup G] [AddAction G α] :
                                  Type u_2

                                  The quotient by AddAction.orbitRel, given a name to enable dot notation.

                                  Equations
                                  Instances For
                                    @[reducible, inline]
                                    abbrev MulAction.orbitRel.Quotient (G : Type u_1) (α : Type u_2) [Group G] [MulAction G α] :
                                    Type u_2

                                    The quotient by MulAction.orbitRel, given a name to enable dot notation.

                                    Equations
                                    Instances For

                                      An additive action is pretransitive if and only if the quotient by AddAction.orbitRel is a subsingleton.

                                      An action is pretransitive if and only if the quotient by MulAction.orbitRel is a subsingleton.

                                      If α is non-empty, an additive action is pretransitive if and only if the quotient has exactly one element.

                                      If α is non-empty, an action is pretransitive if and only if the quotient has exactly one element.

                                      The orbit corresponding to an element of the quotient by AddAction.orbitRel

                                      Equations
                                      Instances For
                                        def MulAction.orbitRel.Quotient.orbit {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (x : MulAction.orbitRel.Quotient G α) :
                                        Set α

                                        The orbit corresponding to an element of the quotient by MulAction.orbitRel

                                        Equations
                                        Instances For
                                          theorem AddAction.orbitRel.Quotient.mem_orbit {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {a : α} {x : AddAction.orbitRel.Quotient G α} :
                                          a x.orbit Quotient.mk'' a = x
                                          theorem MulAction.orbitRel.Quotient.mem_orbit {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {a : α} {x : MulAction.orbitRel.Quotient G α} :
                                          a x.orbit Quotient.mk'' a = x
                                          theorem AddAction.orbitRel.Quotient.orbit_eq_orbit_out {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (x : AddAction.orbitRel.Quotient G α) {φ : AddAction.orbitRel.Quotient G αα} (hφ : Function.RightInverse φ Quotient.mk') :
                                          x.orbit = AddAction.orbit G (φ x)

                                          Note that hφ = Quotient.out_eq' is a useful choice here.

                                          theorem MulAction.orbitRel.Quotient.orbit_eq_orbit_out {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (x : MulAction.orbitRel.Quotient G α) {φ : MulAction.orbitRel.Quotient G αα} (hφ : Function.RightInverse φ Quotient.mk') :
                                          x.orbit = MulAction.orbit G (φ x)

                                          Note that hφ = Quotient.out_eq' is a useful choice here.

                                          theorem AddAction.orbitRel.Quotient.orbit_injective {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] :
                                          Function.Injective AddAction.orbitRel.Quotient.orbit
                                          theorem MulAction.orbitRel.Quotient.orbit_injective {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] :
                                          Function.Injective MulAction.orbitRel.Quotient.orbit
                                          @[simp]
                                          theorem AddAction.orbitRel.Quotient.orbit_inj {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {x : AddAction.orbitRel.Quotient G α} {y : AddAction.orbitRel.Quotient G α} :
                                          x.orbit = y.orbit x = y
                                          @[simp]
                                          theorem MulAction.orbitRel.Quotient.orbit_inj {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {x : MulAction.orbitRel.Quotient G α} {y : MulAction.orbitRel.Quotient G α} :
                                          x.orbit = y.orbit x = y
                                          theorem AddAction.orbitRel.quotient_eq_of_quotient_addSubgroup_eq {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {H : AddSubgroup G} {a : α} {b : α} (h : a = b) :
                                          a = b
                                          theorem MulAction.orbitRel.quotient_eq_of_quotient_subgroup_eq {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {H : Subgroup G} {a : α} {b : α} (h : a = b) :
                                          a = b
                                          theorem AddAction.orbitRel.Quotient.orbit_nonempty {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (x : AddAction.orbitRel.Quotient G α) :
                                          x.orbit.Nonempty
                                          theorem MulAction.orbitRel.Quotient.orbit_nonempty {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (x : MulAction.orbitRel.Quotient G α) :
                                          x.orbit.Nonempty
                                          theorem AddAction.orbitRel.Quotient.mapsTo_vadd_orbit {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (g : G) (x : AddAction.orbitRel.Quotient G α) :
                                          Set.MapsTo (fun (x : α) => g +ᵥ x) x.orbit x.orbit
                                          theorem MulAction.orbitRel.Quotient.mapsTo_smul_orbit {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (g : G) (x : MulAction.orbitRel.Quotient G α) :
                                          Set.MapsTo (fun (x : α) => g x) x.orbit x.orbit
                                          instance AddAction.instElemOrbit_1 {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] (x : AddAction.orbitRel.Quotient G α) :
                                          AddAction G x.orbit
                                          Equations
                                          instance MulAction.instElemOrbit_1 {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (x : MulAction.orbitRel.Quotient G α) :
                                          MulAction G x.orbit
                                          Equations
                                          @[simp]
                                          theorem AddAction.orbitRel.Quotient.orbit.coe_vadd {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {g : G} {x : AddAction.orbitRel.Quotient G α} {a : x.orbit} :
                                          (g +ᵥ a) = g +ᵥ a
                                          @[simp]
                                          theorem MulAction.orbitRel.Quotient.orbit.coe_smul {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {g : G} {x : MulAction.orbitRel.Quotient G α} {a : x.orbit} :
                                          (g a) = g a
                                          Equations
                                          • =
                                          Equations
                                          • =
                                          @[simp]
                                          theorem AddAction.orbitRel.Quotient.mem_addSubgroup_orbit_iff {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {H : AddSubgroup G} {x : AddAction.orbitRel.Quotient G α} {a : x.orbit} {b : x.orbit} :
                                          a AddAction.orbit H b a AddAction.orbit (↥H) b
                                          @[simp]
                                          theorem MulAction.orbitRel.Quotient.mem_subgroup_orbit_iff {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {H : Subgroup G} {x : MulAction.orbitRel.Quotient G α} {a : x.orbit} {b : x.orbit} :
                                          a MulAction.orbit H b a MulAction.orbit (↥H) b
                                          theorem AddAction.orbitRel.Quotient.addSubgroup_quotient_eq_iff {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {H : AddSubgroup G} {x : AddAction.orbitRel.Quotient G α} {a : x.orbit} {b : x.orbit} :
                                          a = b a = b
                                          theorem MulAction.orbitRel.Quotient.subgroup_quotient_eq_iff {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {H : Subgroup G} {x : MulAction.orbitRel.Quotient G α} {a : x.orbit} {b : x.orbit} :
                                          a = b a = b
                                          theorem AddAction.orbitRel.Quotient.mem_addSubgroup_orbit_iff' {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {H : AddSubgroup G} {x : AddAction.orbitRel.Quotient G α} {a : x.orbit} {b : x.orbit} {c : α} (h : a = b) :
                                          a AddAction.orbit (↥H) c b AddAction.orbit (↥H) c
                                          theorem MulAction.orbitRel.Quotient.mem_subgroup_orbit_iff' {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {H : Subgroup G} {x : MulAction.orbitRel.Quotient G α} {a : x.orbit} {b : x.orbit} {c : α} (h : a = b) :
                                          a MulAction.orbit (↥H) c b MulAction.orbit (↥H) c
                                          def AddAction.selfEquivSigmaOrbits' (G : Type u_1) (α : Type u_2) [AddGroup G] [AddAction G α] :
                                          α (ω : AddAction.orbitRel.Quotient G α) × ω.orbit

                                          Decomposition of a type X as a disjoint union of its orbits under an additive group action.

                                          This version is expressed in terms of AddAction.orbitRel.Quotient.orbit instead of AddAction.orbit, to avoid mentioning Quotient.out'.

                                          Equations
                                          Instances For
                                            def MulAction.selfEquivSigmaOrbits' (G : Type u_1) (α : Type u_2) [Group G] [MulAction G α] :
                                            α (ω : MulAction.orbitRel.Quotient G α) × ω.orbit

                                            Decomposition of a type X as a disjoint union of its orbits under a group action.

                                            This version is expressed in terms of MulAction.orbitRel.Quotient.orbit instead of MulAction.orbit, to avoid mentioning Quotient.out'.

                                            Equations
                                            Instances For

                                              Decomposition of a type X as a disjoint union of its orbits under an additive group action.

                                              Equations
                                              Instances For
                                                def MulAction.selfEquivSigmaOrbits (G : Type u_1) (α : Type u_2) [Group G] [MulAction G α] :

                                                Decomposition of a type X as a disjoint union of its orbits under a group action.

                                                Equations
                                                Instances For
                                                  theorem AddAction.univ_eq_iUnion_orbit (G : Type u_1) (α : Type u_2) [AddGroup G] [AddAction G α] :
                                                  Set.univ = ⋃ (x : AddAction.orbitRel.Quotient G α), x.orbit

                                                  Decomposition of a type X as a disjoint union of its orbits under an additive group action. Phrased as a set union. See AddAction.selfEquivSigmaOrbits for the type isomorphism.

                                                  theorem MulAction.univ_eq_iUnion_orbit (G : Type u_1) (α : Type u_2) [Group G] [MulAction G α] :
                                                  Set.univ = ⋃ (x : MulAction.orbitRel.Quotient G α), x.orbit

                                                  Decomposition of a type X as a disjoint union of its orbits under a group action. Phrased as a set union. See MulAction.selfEquivSigmaOrbits for the type isomorphism.

                                                  theorem AddAction.orbitRel_le_fst (G : Type u_1) (α : Type u_2) (β : Type u_3) [AddGroup G] [AddAction G α] [AddAction G β] :
                                                  theorem MulAction.orbitRel_le_fst (G : Type u_1) (α : Type u_2) (β : Type u_3) [Group G] [MulAction G α] [MulAction G β] :
                                                  theorem AddAction.orbitRel_le_snd (G : Type u_1) (α : Type u_2) (β : Type u_3) [AddGroup G] [AddAction G α] [AddAction G β] :
                                                  theorem MulAction.orbitRel_le_snd (G : Type u_1) (α : Type u_2) (β : Type u_3) [Group G] [MulAction G α] [MulAction G β] :
                                                  def AddAction.stabilizer (G : Type u_1) {α : Type u_2} [AddGroup G] [AddAction G α] (a : α) :

                                                  The stabilizer of an element under an action, i.e. what sends the element to itself. An additive subgroup.

                                                  Equations
                                                  Instances For
                                                    def MulAction.stabilizer (G : Type u_1) {α : Type u_2} [Group G] [MulAction G α] (a : α) :

                                                    The stabilizer of an element under an action, i.e. what sends the element to itself. A subgroup.

                                                    Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem AddAction.mem_stabilizer_iff {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {a : α} {g : G} :
                                                      @[simp]
                                                      theorem MulAction.mem_stabilizer_iff {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {a : α} {g : G} :
                                                      theorem AddAction.le_stabilizer_vadd_left {G : Type u_1} {α : Type u_2} {β : Type u_3} [AddGroup G] [AddAction G α] [AddAction G β] [VAdd α β] [VAddAssocClass G α β] (a : α) (b : β) :
                                                      theorem MulAction.le_stabilizer_smul_left {G : Type u_1} {α : Type u_2} {β : Type u_3} [Group G] [MulAction G α] [MulAction G β] [SMul α β] [IsScalarTower G α β] (a : α) (b : β) :
                                                      theorem AddAction.le_stabilizer_vadd_right {α : Type u_2} {β : Type u_3} {G' : Type u_4} [AddGroup G'] [VAdd α β] [AddAction G' β] [VAddCommClass G' α β] (a : α) (b : β) :
                                                      theorem MulAction.le_stabilizer_smul_right {α : Type u_2} {β : Type u_3} {G' : Type u_4} [Group G'] [SMul α β] [MulAction G' β] [SMulCommClass G' α β] (a : α) (b : β) :
                                                      @[simp]
                                                      theorem AddAction.stabilizer_vadd_eq_left {G : Type u_1} {α : Type u_2} {β : Type u_3} [AddGroup G] [AddAction G α] [AddAction G β] [VAdd α β] [VAddAssocClass G α β] (a : α) (b : β) (h : Function.Injective fun (x : α) => x +ᵥ b) :
                                                      @[simp]
                                                      theorem MulAction.stabilizer_smul_eq_left {G : Type u_1} {α : Type u_2} {β : Type u_3} [Group G] [MulAction G α] [MulAction G β] [SMul α β] [IsScalarTower G α β] (a : α) (b : β) (h : Function.Injective fun (x : α) => x b) :
                                                      @[simp]
                                                      theorem AddAction.stabilizer_vadd_eq_right {G : Type u_1} {β : Type u_3} [AddGroup G] [AddAction G β] {α : Type u_4} [AddGroup α] [AddAction α β] [VAddCommClass G α β] (a : α) (b : β) :
                                                      @[simp]
                                                      theorem MulAction.stabilizer_smul_eq_right {G : Type u_1} {β : Type u_3} [Group G] [MulAction G β] {α : Type u_4} [Group α] [MulAction α β] [SMulCommClass G α β] (a : α) (b : β) :
                                                      @[simp]
                                                      theorem AddAction.stabilizer_add_eq_left {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] [AddGroup α] [VAddAssocClass G α α] (a : α) (b : α) :
                                                      @[simp]
                                                      theorem MulAction.stabilizer_mul_eq_left {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] [Group α] [IsScalarTower G α α] (a : α) (b : α) :
                                                      @[simp]
                                                      theorem AddAction.stabilizer_add_eq_right {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] [AddGroup α] [VAddCommClass G α α] (a : α) (b : α) :
                                                      @[simp]
                                                      theorem MulAction.stabilizer_mul_eq_right {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] [Group α] [SMulCommClass G α α] (a : α) (b : α) :
                                                      theorem MulAction.stabilizer_smul_eq_stabilizer_map_conj {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] (g : G) (a : α) :

                                                      If the stabilizer of a is S, then the stabilizer of g • a is gSg⁻¹.

                                                      noncomputable def MulAction.stabilizerEquivStabilizerOfOrbitRel {G : Type u_1} {α : Type u_2} [Group G] [MulAction G α] {a : α} {b : α} (h : (MulAction.orbitRel G α) a b) :

                                                      A bijection between the stabilizers of two elements in the same orbit.

                                                      Equations
                                                      Instances For

                                                        If the stabilizer of x is S, then the stabilizer of g +ᵥ x is g + S + (-g).

                                                        noncomputable def AddAction.stabilizerEquivStabilizerOfOrbitRel {G : Type u_1} {α : Type u_2} [AddGroup G] [AddAction G α] {a : α} {b : α} (h : (AddAction.orbitRel G α) a b) :

                                                        A bijection between the stabilizers of two elements in the same orbit.

                                                        Equations
                                                        Instances For
                                                          theorem Equiv.swap_mem_stabilizer {α : Type u_1} [DecidableEq α] {S : Set α} {a : α} {b : α} :
                                                          theorem MulAction.le_stabilizer_iff_smul_le {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] (s : Set α) (H : Subgroup G) :
                                                          H MulAction.stabilizer G s gH, g s s

                                                          To prove inclusion of a subgroup in a stabilizer, it is enough to prove inclusions.

                                                          theorem MulAction.mem_stabilizer_of_finite_iff_smul_le {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] (s : Set α) (hs : s.Finite) (g : G) :

                                                          To prove membership to stabilizer of a finite set, it is enough to prove one inclusion.

                                                          theorem MulAction.mem_stabilizer_of_finite_iff_le_smul {G : Type u_1} [Group G] {α : Type u_2} [MulAction G α] (s : Set α) (hs : s.Finite) (g : G) :

                                                          To prove membership to stabilizer of a finite set, it is enough to prove one inclusion.