Documentation

Mathlib.Topology.Sets.Opens

Open sets #

Summary #

We define the subtype of open sets in a topological space.

Main Definitions #

Bundled open sets #

Bundled open neighborhoods #

Main results #

We define order structures on both Opens α (CompleteLattice, Frame) and OpenNhdsOf x (OrderTop, DistribLattice).

TODO #

structure TopologicalSpace.Opens (α : Type u_2) [TopologicalSpace α] :
Type u_2

The type of open subsets of a topological space.

theorem TopologicalSpace.Opens.forall {α : Type u_2} [TopologicalSpace α] {p : TopologicalSpace.Opens αProp} :
(∀ (U : TopologicalSpace.Opens α), p U) ∀ (U : Set α) (hU : IsOpen U), p { carrier := U, is_open' := hU }
@[simp]
@[simp]
theorem TopologicalSpace.Opens.coe_mk {α : Type u_2} [TopologicalSpace α] {U : Set α} {hU : IsOpen U} :
{ carrier := U, is_open' := hU } = U

the coercion Opens α → Set α applied to a pair is the same as taking the first component

@[simp]
theorem TopologicalSpace.Opens.mem_mk {α : Type u_2} [TopologicalSpace α] {x : α} {U : Set α} {h : IsOpen U} :
x { carrier := U, is_open' := h } x U
theorem TopologicalSpace.Opens.nonempty_coe {α : Type u_2} [TopologicalSpace α] {U : TopologicalSpace.Opens α} :
(↑U).Nonempty ∃ (x : α), x U
theorem TopologicalSpace.Opens.ext {α : Type u_2} [TopologicalSpace α] {U V : TopologicalSpace.Opens α} (h : U = V) :
U = V
theorem TopologicalSpace.Opens.coe_inj {α : Type u_2} [TopologicalSpace α] {U V : TopologicalSpace.Opens α} :
U = V U = V
@[reducible, inline]
abbrev TopologicalSpace.Opens.inclusion {α : Type u_2} [TopologicalSpace α] {U V : TopologicalSpace.Opens α} (h : U V) :
UV

A version of Set.inclusion not requiring definitional abuse

Equations
@[simp]
theorem TopologicalSpace.Opens.mk_coe {α : Type u_2} [TopologicalSpace α] (U : TopologicalSpace.Opens α) :
{ carrier := U, is_open' := } = U

See Note [custom simps projection].

Equations

The interior of a set, as an element of Opens.

Equations

The galois coinsertion between sets and opens.

Equations
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem TopologicalSpace.Opens.mk_inf_mk {α : Type u_2} [TopologicalSpace α] {U V : Set α} {hU : IsOpen U} {hV : IsOpen V} :
{ carrier := U, is_open' := hU } { carrier := V, is_open' := hV } = { carrier := U V, is_open' := }
@[simp]
theorem TopologicalSpace.Opens.coe_inf {α : Type u_2} [TopologicalSpace α] (s t : TopologicalSpace.Opens α) :
(s t) = s t
@[simp]
theorem TopologicalSpace.Opens.coe_sup {α : Type u_2} [TopologicalSpace α] (s t : TopologicalSpace.Opens α) :
(s t) = s t
@[simp]
theorem TopologicalSpace.Opens.mk_empty {α : Type u_2} [TopologicalSpace α] :
{ carrier := , is_open' := } =
@[simp]
theorem TopologicalSpace.Opens.mem_top {α : Type u_2} [TopologicalSpace α] (x : α) :
@[simp]
theorem TopologicalSpace.Opens.mk_univ {α : Type u_2} [TopologicalSpace α] :
{ carrier := Set.univ, is_open' := } =
@[simp]
theorem TopologicalSpace.Opens.coe_sSup {α : Type u_2} [TopologicalSpace α] {S : Set (TopologicalSpace.Opens α)} :
(sSup S) = iS, i
@[simp]
theorem TopologicalSpace.Opens.coe_finset_sup {ι : Type u_1} {α : Type u_2} [TopologicalSpace α] (f : ιTopologicalSpace.Opens α) (s : Finset ι) :
(s.sup f) = s.sup (SetLike.coe f)
@[simp]
theorem TopologicalSpace.Opens.coe_finset_inf {ι : Type u_1} {α : Type u_2} [TopologicalSpace α] (f : ιTopologicalSpace.Opens α) (s : Finset ι) :
(s.inf f) = s.inf (SetLike.coe f)
@[simp]
theorem TopologicalSpace.Opens.coe_iSup {α : Type u_2} [TopologicalSpace α] {ι : Sort u_5} (s : ιTopologicalSpace.Opens α) :
(⨆ (i : ι), s i) = ⋃ (i : ι), (s i)
theorem TopologicalSpace.Opens.iSup_def {α : Type u_2} [TopologicalSpace α] {ι : Sort u_5} (s : ιTopologicalSpace.Opens α) :
⨆ (i : ι), s i = { carrier := ⋃ (i : ι), (s i), is_open' := }
@[simp]
theorem TopologicalSpace.Opens.iSup_mk {α : Type u_2} [TopologicalSpace α] {ι : Sort u_5} (s : ιSet α) (h : ∀ (i : ι), IsOpen (s i)) :
⨆ (i : ι), { carrier := s i, is_open' := } = { carrier := ⋃ (i : ι), s i, is_open' := }
@[simp]
theorem TopologicalSpace.Opens.mem_iSup {α : Type u_2} [TopologicalSpace α] {ι : Sort u_5} {x : α} {s : ιTopologicalSpace.Opens α} :
x iSup s ∃ (i : ι), x s i
@[simp]
theorem TopologicalSpace.Opens.mem_sSup {α : Type u_2} [TopologicalSpace α] {Us : Set (TopologicalSpace.Opens α)} {x : α} :
x sSup Us uUs, x u
@[deprecated TopologicalSpace.Opens.isOpenEmbedding' (since := "2024-10-18")]

Alias of TopologicalSpace.Opens.isOpenEmbedding'.

@[deprecated TopologicalSpace.Opens.isOpenEmbedding_of_le (since := "2024-10-18")]

Alias of TopologicalSpace.Opens.isOpenEmbedding_of_le.

An open set in the indiscrete topology is either empty or the whole space.

A set of opens α is a basis if the set of corresponding sets is a topological basis.

Equations
theorem TopologicalSpace.Opens.IsBasis.isCompact_open_iff_eq_finite_iUnion {α : Type u_2} [TopologicalSpace α] {ι : Type u_5} (b : ιTopologicalSpace.Opens α) (hb : TopologicalSpace.Opens.IsBasis (Set.range b)) (hb' : ∀ (i : ι), IsCompact (b i)) (U : Set α) :
IsCompact U IsOpen U ∃ (s : Set ι), s.Finite U = is, (b i)

If α has a basis consisting of compact opens, then an open set in α is compact open iff it is a finite union of some elements in the basis

theorem TopologicalSpace.Opens.IsBasis.le_iff {α : Type u_5} {t₁ t₂ : TopologicalSpace α} {Us : Set (TopologicalSpace.Opens α)} (hUs : TopologicalSpace.Opens.IsBasis Us) :
t₁ t₂ UUs, IsOpen U

The preimage of an open set, as an open set.

Equations
@[simp]
theorem TopologicalSpace.Opens.coe_comap {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : C(α, β)) (U : TopologicalSpace.Opens β) :
@[simp]
theorem TopologicalSpace.Opens.mem_comap {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] {f : C(α, β)} {U : TopologicalSpace.Opens β} {x : α} :

A homeomorphism induces an order-preserving equivalence on open sets, by taking comaps.

Equations
@[simp]
theorem Homeomorph.opensCongr_apply {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : α ≃ₜ β) :
f.opensCongr = (TopologicalSpace.Opens.comap f.symm)
@[simp]
theorem Homeomorph.opensCongr_symm {α : Type u_2} {β : Type u_3} [TopologicalSpace α] [TopologicalSpace β] (f : α ≃ₜ β) :
f.opensCongr.symm = f.symm.opensCongr
structure TopologicalSpace.OpenNhdsOf {α : Type u_2} [TopologicalSpace α] (x : α) extends TopologicalSpace.Opens α :
Type u_2

The open neighborhoods of a point. See also Opens or nhds.

Equations
Equations
Equations

Preimage of an open neighborhood of f x under a continuous map f as a LatticeHom.

Equations
  • One or more equations did not get rendered due to their size.