Documentation

Mathlib.Topology.UniformSpace.UniformEmbedding

Uniform embeddings of uniform spaces. #

Extension of uniform continuous functions.

Uniform inducing maps #

theorem isUniformInducing_iff {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] (f : αβ) :
IsUniformInducing f Filter.comap (fun (x : α × α) => (f x.1, f x.2)) (uniformity β) = uniformity α
structure IsUniformInducing {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] (f : αβ) :

A map f : α → β between uniform spaces is called uniform inducing if the uniformity filter on α is the pullback of the uniformity filter on β under Prod.map f f. If α is a separated space, then this implies that f is injective, hence it is a IsUniformEmbedding.

Instances For
    theorem IsUniformInducing.comap_uniformity {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (self : IsUniformInducing f) :
    Filter.comap (fun (x : α × α) => (f x.1, f x.2)) (uniformity β) = uniformity α

    The uniformity filter on the domain is the pullback of the uniformity filter on the codomain under Prod.map f f.

    @[deprecated IsUniformInducing]
    def UniformInducing {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] (f : αβ) :

    Alias of IsUniformInducing.


    A map f : α → β between uniform spaces is called uniform inducing if the uniformity filter on α is the pullback of the uniformity filter on β under Prod.map f f. If α is a separated space, then this implies that f is injective, hence it is a IsUniformEmbedding.

    Equations
    Instances For
      theorem isUniformInducing_iff_uniformSpace {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} :
      @[deprecated isUniformInducing_iff_uniformSpace]
      theorem uniformInducing_iff_uniformSpace {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} :

      Alias of isUniformInducing_iff_uniformSpace.

      theorem IsUniformInducing.comap_uniformSpace {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} :
      IsUniformInducing fUniformSpace.comap f inst✝ = inst✝¹

      Alias of the forward direction of isUniformInducing_iff_uniformSpace.

      @[deprecated IsUniformInducing.comap_uniformSpace]
      theorem UniformInducing.comap_uniformSpace {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} :
      IsUniformInducing fUniformSpace.comap f inst✝ = inst✝¹

      Alias of the forward direction of isUniformInducing_iff_uniformSpace.


      Alias of the forward direction of isUniformInducing_iff_uniformSpace.

      @[deprecated isUniformInducing_iff']

      Alias of isUniformInducing_iff'.

      theorem Filter.HasBasis.isUniformInducing_iff {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {ι : Sort u_1} {ι' : Sort u_2} {p : ιProp} {p' : ι'Prop} {s : ιSet (α × α)} {s' : ι'Set (β × β)} (h : (uniformity α).HasBasis p s) (h' : (uniformity β).HasBasis p' s') {f : αβ} :
      IsUniformInducing f (∀ (i : ι'), p' i∃ (j : ι), p j ∀ (x y : α), (x, y) s j(f x, f y) s' i) ∀ (j : ι), p j∃ (i : ι'), p' i ∀ (x y : α), (f x, f y) s' i(x, y) s j
      @[deprecated Filter.HasBasis.isUniformInducing_iff]
      theorem Filter.HasBasis.uniformInducing_iff {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {ι : Sort u_1} {ι' : Sort u_2} {p : ιProp} {p' : ι'Prop} {s : ιSet (α × α)} {s' : ι'Set (β × β)} (h : (uniformity α).HasBasis p s) (h' : (uniformity β).HasBasis p' s') {f : αβ} :
      IsUniformInducing f (∀ (i : ι'), p' i∃ (j : ι), p j ∀ (x y : α), (x, y) s j(f x, f y) s' i) ∀ (j : ι), p j∃ (i : ι'), p' i ∀ (x y : α), (f x, f y) s' i(x, y) s j

      Alias of Filter.HasBasis.isUniformInducing_iff.

      theorem IsUniformInducing.mk' {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (h : ∀ (s : Set (α × α)), s uniformity α tuniformity β, ∀ (x y : α), (f x, f y) t(x, y) s) :
      @[deprecated IsUniformInducing.mk']
      theorem UniformInducing.mk' {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (h : ∀ (s : Set (α × α)), s uniformity α tuniformity β, ∀ (x y : α), (f x, f y) t(x, y) s) :

      Alias of IsUniformInducing.mk'.

      @[deprecated IsUniformInducing.id]

      Alias of IsUniformInducing.id.

      theorem IsUniformInducing.comp {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {g : βγ} (hg : IsUniformInducing g) {f : αβ} (hf : IsUniformInducing f) :
      @[deprecated IsUniformInducing.comp]
      theorem UniformInducing.comp {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {g : βγ} (hg : IsUniformInducing g) {f : αβ} (hf : IsUniformInducing f) :

      Alias of IsUniformInducing.comp.

      theorem IsUniformInducing.of_comp_iff {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {g : βγ} (hg : IsUniformInducing g) {f : αβ} :
      @[deprecated IsUniformInducing.of_comp_iff]
      theorem UniformInducing.of_comp_iff {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {g : βγ} (hg : IsUniformInducing g) {f : αβ} :

      Alias of IsUniformInducing.of_comp_iff.

      theorem IsUniformInducing.basis_uniformity {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (hf : IsUniformInducing f) {ι : Sort u_1} {p : ιProp} {s : ιSet (β × β)} (H : (uniformity β).HasBasis p s) :
      (uniformity α).HasBasis p fun (i : ι) => Prod.map f f ⁻¹' s i
      @[deprecated IsUniformInducing.basis_uniformity]
      theorem UniformInducing.basis_uniformity {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (hf : IsUniformInducing f) {ι : Sort u_1} {p : ιProp} {s : ιSet (β × β)} (H : (uniformity β).HasBasis p s) :
      (uniformity α).HasBasis p fun (i : ι) => Prod.map f f ⁻¹' s i

      Alias of IsUniformInducing.basis_uniformity.

      theorem IsUniformInducing.cauchy_map_iff {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (hf : IsUniformInducing f) {F : Filter α} :
      @[deprecated IsUniformInducing.cauchy_map_iff]
      theorem UniformInducing.cauchy_map_iff {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (hf : IsUniformInducing f) {F : Filter α} :

      Alias of IsUniformInducing.cauchy_map_iff.

      theorem IsUniformInducing.of_comp {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {f : αβ} {g : βγ} (hf : UniformContinuous f) (hg : UniformContinuous g) (hgf : IsUniformInducing (g f)) :
      @[deprecated IsUniformInducing.of_comp]
      theorem uniformInducing_of_compose {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {f : αβ} {g : βγ} (hf : UniformContinuous f) (hg : UniformContinuous g) (hgf : IsUniformInducing (g f)) :

      Alias of IsUniformInducing.of_comp.

      @[deprecated IsUniformInducing.uniformContinuous]
      theorem UniformInducing.uniformContinuous {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (hf : IsUniformInducing f) :

      Alias of IsUniformInducing.uniformContinuous.

      theorem IsUniformInducing.uniformContinuous_iff {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {f : αβ} {g : βγ} (hg : IsUniformInducing g) :
      @[deprecated IsUniformInducing.uniformContinuous_iff]
      theorem UniformInducing.uniformContinuous_iff {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {f : αβ} {g : βγ} (hg : IsUniformInducing g) :

      Alias of IsUniformInducing.uniformContinuous_iff.

      theorem IsUniformInducing.isUniformInducing_comp_iff {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {f : αβ} {g : βγ} (hg : IsUniformInducing g) :
      @[deprecated IsUniformInducing.isUniformInducing_comp_iff]
      theorem UniformInducing.uniformInducing_comp_iff {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {f : αβ} {g : βγ} (hg : IsUniformInducing g) :

      Alias of IsUniformInducing.isUniformInducing_comp_iff.

      theorem IsUniformInducing.uniformContinuousOn_iff {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {f : αβ} {g : βγ} {S : Set α} (hg : IsUniformInducing g) :
      @[deprecated IsUniformInducing.uniformContinuousOn_iff]
      theorem UniformInducing.uniformContinuousOn_iff {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {f : αβ} {g : βγ} {S : Set α} (hg : IsUniformInducing g) :

      Alias of IsUniformInducing.uniformContinuousOn_iff.

      theorem IsUniformInducing.inducing {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (h : IsUniformInducing f) :
      @[deprecated IsUniformInducing.inducing]
      theorem UniformInducing.inducing {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (h : IsUniformInducing f) :

      Alias of IsUniformInducing.inducing.

      theorem IsUniformInducing.prod {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {α' : Type u_1} {β' : Type u_2} [UniformSpace α'] [UniformSpace β'] {e₁ : αα'} {e₂ : ββ'} (h₁ : IsUniformInducing e₁) (h₂ : IsUniformInducing e₂) :
      IsUniformInducing fun (p : α × β) => (e₁ p.1, e₂ p.2)
      @[deprecated IsUniformInducing.prod]
      theorem UniformInducing.prod {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {α' : Type u_1} {β' : Type u_2} [UniformSpace α'] [UniformSpace β'] {e₁ : αα'} {e₂ : ββ'} (h₁ : IsUniformInducing e₁) (h₂ : IsUniformInducing e₂) :
      IsUniformInducing fun (p : α × β) => (e₁ p.1, e₂ p.2)

      Alias of IsUniformInducing.prod.

      theorem IsUniformInducing.isDenseInducing {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (h : IsUniformInducing f) (hd : DenseRange f) :
      @[deprecated IsUniformInducing.isDenseInducing]
      theorem UniformInducing.isDenseInducing {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (h : IsUniformInducing f) (hd : DenseRange f) :

      Alias of IsUniformInducing.isDenseInducing.

      @[deprecated SeparationQuotient.isUniformInducing_mk]
      theorem SeparationQuotient.uniformInducing_mk {α : Type u} [UniformSpace α] :
      IsUniformInducing SeparationQuotient.mk

      Alias of SeparationQuotient.isUniformInducing_mk.

      theorem IsUniformInducing.injective {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] [T0Space α] {f : αβ} (h : IsUniformInducing f) :
      @[deprecated IsUniformInducing.injective]
      theorem UniformInducing.injective {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] [T0Space α] {f : αβ} (h : IsUniformInducing f) :

      Alias of IsUniformInducing.injective.

      Uniform embeddings #

      structure IsUniformEmbedding {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] (f : αβ) extends IsUniformInducing :

      A map f : α → β between uniform spaces is a uniform embedding if it is uniform inducing and injective. If α is a separated space, then the latter assumption follows from the former.

      Instances For
        theorem IsUniformEmbedding.inj {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (self : IsUniformEmbedding f) :

        A uniform embedding is injective.

        @[deprecated IsUniformEmbedding]
        def UniformEmbedding {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] (f : αβ) :

        Alias of IsUniformEmbedding.


        A map f : α → β between uniform spaces is a uniform embedding if it is uniform inducing and injective. If α is a separated space, then the latter assumption follows from the former.

        Equations
        Instances For
          @[deprecated isUniformEmbedding_iff']

          Alias of isUniformEmbedding_iff'.

          theorem Filter.HasBasis.isUniformEmbedding_iff' {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {ι : Sort u_1} {ι' : Sort u_2} {p : ιProp} {p' : ι'Prop} {s : ιSet (α × α)} {s' : ι'Set (β × β)} (h : (uniformity α).HasBasis p s) (h' : (uniformity β).HasBasis p' s') {f : αβ} :
          IsUniformEmbedding f Function.Injective f (∀ (i : ι'), p' i∃ (j : ι), p j ∀ (x y : α), (x, y) s j(f x, f y) s' i) ∀ (j : ι), p j∃ (i : ι'), p' i ∀ (x y : α), (f x, f y) s' i(x, y) s j
          @[deprecated Filter.HasBasis.isUniformEmbedding_iff']
          theorem Filter.HasBasis.uniformEmbedding_iff' {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {ι : Sort u_1} {ι' : Sort u_2} {p : ιProp} {p' : ι'Prop} {s : ιSet (α × α)} {s' : ι'Set (β × β)} (h : (uniformity α).HasBasis p s) (h' : (uniformity β).HasBasis p' s') {f : αβ} :
          IsUniformEmbedding f Function.Injective f (∀ (i : ι'), p' i∃ (j : ι), p j ∀ (x y : α), (x, y) s j(f x, f y) s' i) ∀ (j : ι), p j∃ (i : ι'), p' i ∀ (x y : α), (f x, f y) s' i(x, y) s j

          Alias of Filter.HasBasis.isUniformEmbedding_iff'.

          theorem Filter.HasBasis.isUniformEmbedding_iff {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {ι : Sort u_1} {ι' : Sort u_2} {p : ιProp} {p' : ι'Prop} {s : ιSet (α × α)} {s' : ι'Set (β × β)} (h : (uniformity α).HasBasis p s) (h' : (uniformity β).HasBasis p' s') {f : αβ} :
          IsUniformEmbedding f Function.Injective f UniformContinuous f ∀ (j : ι), p j∃ (i : ι'), p' i ∀ (x y : α), (f x, f y) s' i(x, y) s j
          @[deprecated Filter.HasBasis.isUniformEmbedding_iff]
          theorem Filter.HasBasis.uniformEmbedding_iff {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {ι : Sort u_1} {ι' : Sort u_2} {p : ιProp} {p' : ι'Prop} {s : ιSet (α × α)} {s' : ι'Set (β × β)} (h : (uniformity α).HasBasis p s) (h' : (uniformity β).HasBasis p' s') {f : αβ} :
          IsUniformEmbedding f Function.Injective f UniformContinuous f ∀ (j : ι), p j∃ (i : ι'), p' i ∀ (x y : α), (f x, f y) s' i(x, y) s j

          Alias of Filter.HasBasis.isUniformEmbedding_iff.

          theorem isUniformEmbedding_subtype_val {α : Type u} [UniformSpace α] {p : αProp} :
          IsUniformEmbedding Subtype.val
          @[deprecated isUniformEmbedding_subtype_val]
          theorem uniformEmbedding_subtype_val {α : Type u} [UniformSpace α] {p : αProp} :
          IsUniformEmbedding Subtype.val

          Alias of isUniformEmbedding_subtype_val.

          theorem isUniformEmbedding_set_inclusion {α : Type u} [UniformSpace α] {s : Set α} {t : Set α} (hst : s t) :
          @[deprecated isUniformEmbedding_set_inclusion]
          theorem uniformEmbedding_set_inclusion {α : Type u} [UniformSpace α] {s : Set α} {t : Set α} (hst : s t) :

          Alias of isUniformEmbedding_set_inclusion.

          theorem IsUniformEmbedding.comp {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {g : βγ} (hg : IsUniformEmbedding g) {f : αβ} (hf : IsUniformEmbedding f) :
          @[deprecated IsUniformEmbedding.comp]
          theorem UniformEmbedding.comp {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {g : βγ} (hg : IsUniformEmbedding g) {f : αβ} (hf : IsUniformEmbedding f) :

          Alias of IsUniformEmbedding.comp.

          theorem IsUniformEmbedding.of_comp_iff {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {g : βγ} (hg : IsUniformEmbedding g) {f : αβ} :
          @[deprecated IsUniformEmbedding.of_comp_iff]
          theorem UniformEmbedding.of_comp_iff {α : Type u} {β : Type v} {γ : Type w} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {g : βγ} (hg : IsUniformEmbedding g) {f : αβ} :

          Alias of IsUniformEmbedding.of_comp_iff.

          theorem Equiv.isUniformEmbedding {α : Type u_1} {β : Type u_2} [UniformSpace α] [UniformSpace β] (f : α β) (h₁ : UniformContinuous f) (h₂ : UniformContinuous f.symm) :
          @[deprecated Equiv.isUniformEmbedding]
          theorem Equiv.uniformEmbedding {α : Type u_1} {β : Type u_2} [UniformSpace α] [UniformSpace β] (f : α β) (h₁ : UniformContinuous f) (h₂ : UniformContinuous f.symm) :

          Alias of Equiv.isUniformEmbedding.

          @[deprecated isUniformEmbedding_inl]
          theorem uniformEmbedding_inl {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] :

          Alias of isUniformEmbedding_inl.

          @[deprecated isUniformEmbedding_inr]
          theorem uniformEmbedding_inr {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] :

          Alias of isUniformEmbedding_inr.

          theorem IsUniformInducing.isUniformEmbedding {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] [T0Space α] {f : αβ} (hf : IsUniformInducing f) :

          If the domain of a IsUniformInducing map f is a T₀ space, then f is injective, hence it is a IsUniformEmbedding.

          @[deprecated IsUniformInducing.isUniformEmbedding]
          theorem UniformInducing.isUniformEmbedding {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] [T0Space α] {f : αβ} (hf : IsUniformInducing f) :

          Alias of IsUniformInducing.isUniformEmbedding.


          If the domain of a IsUniformInducing map f is a T₀ space, then f is injective, hence it is a IsUniformEmbedding.

          @[deprecated IsUniformInducing.isUniformEmbedding]
          theorem IsUniformInducing.uniformEmbedding {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] [T0Space α] {f : αβ} (hf : IsUniformInducing f) :

          Alias of IsUniformInducing.isUniformEmbedding.


          If the domain of a IsUniformInducing map f is a T₀ space, then f is injective, hence it is a IsUniformEmbedding.

          @[deprecated isUniformEmbedding_iff_isUniformInducing]

          Alias of isUniformEmbedding_iff_isUniformInducing.

          @[deprecated isUniformEmbedding_iff_isUniformInducing]

          Alias of isUniformEmbedding_iff_isUniformInducing.

          theorem comap_uniformity_of_spaced_out {β : Type v} [UniformSpace β] {α : Type u_1} {f : αβ} {s : Set (β × β)} (hs : s uniformity β) (hf : Pairwise fun (x y : α) => (f x, f y)s) :

          If a map f : α → β sends any two distinct points to point that are not related by a fixed s ∈ 𝓤 β, then f is uniform inducing with respect to the discrete uniformity on α: the preimage of 𝓤 β under Prod.map f f is the principal filter generated by the diagonal in α × α.

          theorem isUniformEmbedding_of_spaced_out {β : Type v} [UniformSpace β] {α : Type u_1} {f : αβ} {s : Set (β × β)} (hs : s uniformity β) (hf : Pairwise fun (x y : α) => (f x, f y)s) :

          If a map f : α → β sends any two distinct points to point that are not related by a fixed s ∈ 𝓤 β, then f is a uniform embedding with respect to the discrete uniformity on α.

          @[deprecated isUniformEmbedding_of_spaced_out]
          theorem uniformEmbedding_of_spaced_out {β : Type v} [UniformSpace β] {α : Type u_1} {f : αβ} {s : Set (β × β)} (hs : s uniformity β) (hf : Pairwise fun (x y : α) => (f x, f y)s) :

          Alias of isUniformEmbedding_of_spaced_out.


          If a map f : α → β sends any two distinct points to point that are not related by a fixed s ∈ 𝓤 β, then f is a uniform embedding with respect to the discrete uniformity on α.

          theorem IsUniformEmbedding.embedding {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (h : IsUniformEmbedding f) :
          @[deprecated IsUniformEmbedding.embedding]
          theorem UniformEmbedding.embedding {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (h : IsUniformEmbedding f) :

          Alias of IsUniformEmbedding.embedding.

          theorem IsUniformEmbedding.isDenseEmbedding {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (h : IsUniformEmbedding f) (hd : DenseRange f) :
          @[deprecated IsUniformEmbedding.isDenseEmbedding]
          theorem UniformEmbedding.isDenseEmbedding {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (h : IsUniformEmbedding f) (hd : DenseRange f) :

          Alias of IsUniformEmbedding.isDenseEmbedding.

          @[deprecated IsUniformEmbedding.isDenseEmbedding]
          theorem IsUniformEmbedding.denseEmbedding {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (h : IsUniformEmbedding f) (hd : DenseRange f) :

          Alias of IsUniformEmbedding.isDenseEmbedding.

          theorem isClosedEmbedding_of_spaced_out {β : Type v} [UniformSpace β] {α : Type u_1} [TopologicalSpace α] [DiscreteTopology α] [T0Space β] {f : αβ} {s : Set (β × β)} (hs : s uniformity β) (hf : Pairwise fun (x y : α) => (f x, f y)s) :
          @[deprecated isClosedEmbedding_of_spaced_out]
          theorem closedEmbedding_of_spaced_out {β : Type v} [UniformSpace β] {α : Type u_1} [TopologicalSpace α] [DiscreteTopology α] [T0Space β] {f : αβ} {s : Set (β × β)} (hs : s uniformity β) (hf : Pairwise fun (x y : α) => (f x, f y)s) :

          Alias of isClosedEmbedding_of_spaced_out.

          theorem closure_image_mem_nhds_of_isUniformInducing {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {s : Set (α × α)} {e : αβ} (b : β) (he₁ : IsUniformInducing e) (he₂ : IsDenseInducing e) (hs : s uniformity α) :
          ∃ (a : α), closure (e '' {a' : α | (a, a') s}) nhds b
          @[deprecated closure_image_mem_nhds_of_isUniformInducing]
          theorem closure_image_mem_nhds_of_uniformInducing {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {s : Set (α × α)} {e : αβ} (b : β) (he₁ : IsUniformInducing e) (he₂ : IsDenseInducing e) (hs : s uniformity α) :
          ∃ (a : α), closure (e '' {a' : α | (a, a') s}) nhds b

          Alias of closure_image_mem_nhds_of_isUniformInducing.

          @[deprecated isUniformEmbedding_subtypeEmb]
          theorem uniformEmbedding_subtypeEmb {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] (p : αProp) {e : αβ} (ue : IsUniformEmbedding e) (de : IsDenseEmbedding e) :

          Alias of isUniformEmbedding_subtypeEmb.

          theorem IsUniformEmbedding.prod {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {α' : Type u_1} {β' : Type u_2} [UniformSpace α'] [UniformSpace β'] {e₁ : αα'} {e₂ : ββ'} (h₁ : IsUniformEmbedding e₁) (h₂ : IsUniformEmbedding e₂) :
          IsUniformEmbedding fun (p : α × β) => (e₁ p.1, e₂ p.2)
          @[deprecated IsUniformEmbedding.prod]
          theorem UniformEmbedding.prod {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {α' : Type u_1} {β' : Type u_2} [UniformSpace α'] [UniformSpace β'] {e₁ : αα'} {e₂ : ββ'} (h₁ : IsUniformEmbedding e₁) (h₂ : IsUniformEmbedding e₂) :
          IsUniformEmbedding fun (p : α × β) => (e₁ p.1, e₂ p.2)

          Alias of IsUniformEmbedding.prod.

          theorem isComplete_image_iff {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {m : αβ} {s : Set α} (hm : IsUniformInducing m) :

          A set is complete iff its image under a uniform inducing map is complete.

          theorem IsUniformInducing.isComplete_iff {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} {s : Set α} (hf : IsUniformInducing f) :

          If f : X → Y is an IsUniformInducing map, the image f '' s of a set s is complete if and only if s is complete.

          @[deprecated IsUniformInducing.isComplete_iff]
          theorem UniformInducing.isComplete_iff {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} {s : Set α} (hf : IsUniformInducing f) :

          Alias of IsUniformInducing.isComplete_iff.


          If f : X → Y is an IsUniformInducing map, the image f '' s of a set s is complete if and only if s is complete.

          theorem IsUniformEmbedding.isComplete_iff {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} {s : Set α} (hf : IsUniformEmbedding f) :

          If f : X → Y is an IsUniformEmbedding, the image f '' s of a set s is complete if and only if s is complete.

          @[deprecated IsUniformEmbedding.isComplete_iff]
          theorem UniformEmbedding.isComplete_iff {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} {s : Set α} (hf : IsUniformEmbedding f) :

          Alias of IsUniformEmbedding.isComplete_iff.


          If f : X → Y is an IsUniformEmbedding, the image f '' s of a set s is complete if and only if s is complete.

          theorem Subtype.isComplete_iff {α : Type u} [UniformSpace α] {p : αProp} {s : Set { x : α // p x }} :
          IsComplete s IsComplete (Subtype.val '' s)

          Sets of a subtype are complete iff their image under the coercion is complete.

          theorem isComplete_of_complete_image {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {m : αβ} {s : Set α} (hm : IsUniformInducing m) :

          Alias of the forward direction of isComplete_image_iff.


          A set is complete iff its image under a uniform inducing map is complete.

          theorem IsUniformInducing.completeSpace {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (hf : IsUniformInducing f) :

          Alias of the reverse direction of completeSpace_iff_isComplete_range.

          @[deprecated IsUniformInducing.completeSpace]
          theorem UniformInducing.completeSpace {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (hf : IsUniformInducing f) :

          Alias of the reverse direction of completeSpace_iff_isComplete_range.


          Alias of the reverse direction of completeSpace_iff_isComplete_range.

          @[deprecated IsUniformInducing.isComplete_range]
          theorem UniformInducing.isComplete_range {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} [CompleteSpace α] (hf : IsUniformInducing f) :

          Alias of IsUniformInducing.isComplete_range.

          If f is a surjective uniform inducing map, then its domain is a complete space iff its codomain is a complete space. See also _root_.completeSpace_congr for a version that assumes f to be an equivalence.

          @[deprecated IsUniformInducing.completeSpace_congr]
          theorem UniformInducing.completeSpace_congr {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} (hf : IsUniformInducing f) (hsurj : Function.Surjective f) :

          Alias of IsUniformInducing.completeSpace_congr.


          If f is a surjective uniform inducing map, then its domain is a complete space iff its codomain is a complete space. See also _root_.completeSpace_congr for a version that assumes f to be an equivalence.

          theorem completeSpace_congr {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {e : α β} (he : IsUniformEmbedding e) :

          See also IsUniformInducing.completeSpace_congr for a version that works for non-injective maps.

          theorem IsComplete.completeSpace_coe {α : Type u} [UniformSpace α] {s : Set α} :

          Alias of the reverse direction of completeSpace_coe_iff_isComplete.

          theorem IsClosed.completeSpace_coe {α : Type u} [UniformSpace α] [CompleteSpace α] {s : Set α} (hs : IsClosed s) :

          The lift of a complete space to another universe is still complete.

          Equations
          • =
          theorem completeSpace_extension {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {m : βα} (hm : IsUniformInducing m) (dense : DenseRange m) (h : ∀ (f : Filter β), Cauchy f∃ (x : α), Filter.map m f nhds x) :
          theorem totallyBounded_image_iff {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} {s : Set α} (hf : IsUniformInducing f) :
          theorem totallyBounded_preimage {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] {f : αβ} {s : Set β} (hf : IsUniformInducing f) (hs : TotallyBounded s) :
          instance CompleteSpace.sum {α : Type u} {β : Type v} [UniformSpace α] [UniformSpace β] [CompleteSpace α] [CompleteSpace β] :
          Equations
          • =
          theorem isUniformEmbedding_comap {α : Type u_1} {β : Type u_2} {f : αβ} [u : UniformSpace β] (hf : Function.Injective f) :
          @[deprecated isUniformEmbedding_comap]
          theorem uniformEmbedding_comap {α : Type u_1} {β : Type u_2} {f : αβ} [u : UniformSpace β] (hf : Function.Injective f) :

          Alias of isUniformEmbedding_comap.

          def Embedding.comapUniformSpace {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [u : UniformSpace β] (f : αβ) (h : Embedding f) :

          Pull back a uniform space structure by an embedding, adjusting the new uniform structure to make sure that its topology is defeq to the original one.

          Equations
          Instances For
            theorem Embedding.to_isUniformEmbedding {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [u : UniformSpace β] (f : αβ) (h : Embedding f) :
            @[deprecated Embedding.to_isUniformEmbedding]
            theorem Embedding.to_uniformEmbedding {α : Type u_1} {β : Type u_2} [TopologicalSpace α] [u : UniformSpace β] (f : αβ) (h : Embedding f) :

            Alias of Embedding.to_isUniformEmbedding.

            theorem uniformly_extend_exists {α : Type u_1} {β : Type u_2} {γ : Type u_3} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {e : βα} (h_e : IsUniformInducing e) (h_dense : DenseRange e) {f : βγ} (h_f : UniformContinuous f) [CompleteSpace γ] (a : α) :
            ∃ (c : γ), Filter.Tendsto f (Filter.comap e (nhds a)) (nhds c)
            theorem uniform_extend_subtype {α : Type u_1} {β : Type u_2} {γ : Type u_3} [UniformSpace α] [UniformSpace β] [UniformSpace γ] [CompleteSpace γ] {p : αProp} {e : αβ} {f : αγ} {b : β} {s : Set α} (hf : UniformContinuous fun (x : Subtype p) => f x) (he : IsUniformEmbedding e) (hd : ∀ (x : β), x closure (Set.range e)) (hb : closure (e '' s) nhds b) (hs : IsClosed s) (hp : xs, p x) :
            ∃ (c : γ), Filter.Tendsto f (Filter.comap e (nhds b)) (nhds c)
            theorem uniformly_extend_spec {α : Type u_1} {β : Type u_2} {γ : Type u_3} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {e : βα} (h_e : IsUniformInducing e) (h_dense : DenseRange e) {f : βγ} (h_f : UniformContinuous f) [CompleteSpace γ] (a : α) :
            Filter.Tendsto f (Filter.comap e (nhds a)) (nhds (.extend f a))
            theorem uniformContinuous_uniformly_extend {α : Type u_1} {β : Type u_2} {γ : Type u_3} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {e : βα} (h_e : IsUniformInducing e) (h_dense : DenseRange e) {f : βγ} (h_f : UniformContinuous f) [CompleteSpace γ] :
            UniformContinuous (.extend f)
            theorem uniformly_extend_of_ind {α : Type u_1} {β : Type u_2} {γ : Type u_3} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {e : βα} (h_e : IsUniformInducing e) (h_dense : DenseRange e) {f : βγ} (h_f : UniformContinuous f) [T0Space γ] (b : β) :
            .extend f (e b) = f b
            theorem uniformly_extend_unique {α : Type u_1} {β : Type u_2} {γ : Type u_3} [UniformSpace α] [UniformSpace β] [UniformSpace γ] {e : βα} (h_e : IsUniformInducing e) (h_dense : DenseRange e) {f : βγ} [T0Space γ] {g : αγ} (hg : ∀ (b : β), g (e b) = f b) (hc : Continuous g) :
            .extend f = g