Documentation

Stlc.open_close

def Trm.opening (k : ) (u : Trm) :
TrmTrm
Equations
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      def Trm.open₀ (t u : Trm) :
      Equations
      Instances For
        theorem Trm.open_var_fv (t u : Trm) (k : ) :
        ( {k ~> u} t).fv t.fv u.fv
        theorem Trm.opening_lc_lemma (t u v : Trm) (i j : ) :
        i j(( {j ~> u} t) = {i ~> v} {j ~> u} t)t = {i ~> v} t
        def Trm.closing (k x : ) :
        TrmTrm
        Equations
        Instances For
          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            def Trm.close₀ (u : Trm) (x : ) :
            Equations
            • u.close₀ x = { 0 <~ x } u
            Instances For
              theorem Trm.close_var_fv (t : Trm) (x k : ) :
              ( { k <~ x } t).fv = t.fv \ {x}
              inductive Trm.lc :
              TrmProp
              • lc_var (x : ) : ($x).lc
              • lc_abs (t : Trm) (T : Typ) (L : Finset ) : (∀ xL, (t.open₀ ($x)).lc)(λ T,t).lc
              • lc_app (t1 t2 : Trm) : t1.lct2.lc(t1 @ t2).lc
              Instances For
                def Trm.body (t : Trm) :
                Equations
                • t.body = ∃ (L : Finset ), xL, (t.open₀ ($x)).lc
                Instances For
                  theorem Trm.lc_abs_iff_body (t : Trm) (T : Typ) :
                  (λ T,t).lc t.body
                  theorem Trm.close_open (x : ) (t : Trm) :
                  xt.fv∀ (k : ), ( { k <~ x } {k ~> $x} t) = t
                  theorem Trm.close_open_var (x : ) (t : Trm) :
                  xt.fv(t.open₀ ($x)).close₀ x = t
                  theorem Trm.open₀_injective (x : ) (t1 t2 : Trm) :
                  xt1.fvxt2.fvt1.open₀ ($x) = t2.open₀ ($x)t1 = t2
                  theorem Trm.open_close_lemma (x y z : ) (t : Trm) :
                  x yyt.fv∀ (i j : ), i j( {i ~> $y} {j ~> $z} { j <~ x } t) = {j ~> $z} { j <~ x } {i ~> $y} t
                  theorem Trm.open_close (x : ) (t : Trm) :
                  t.lc∀ (k : ), ( {k ~> $x} { k <~ x } t) = t
                  theorem Trm.open_close_var (x : ) (t : Trm) :
                  t.lc(t.close₀ x).open₀ ($x) = t
                  theorem Trm.closing_injective (x i : ) (t1 t2 : Trm) :
                  t1.lct2.lc(( { i <~ x } t1) = { i <~ x } t2)t1 = t2
                  theorem Trm.opening_lc (t u : Trm) :
                  t.lc∀ (k : ), t = {k ~> u} t
                  theorem Trm.open₀_lc (t u : Trm) :
                  t.lct = t.open₀ u
                  theorem Trm.subst_open_rec (t1 t2 u : Trm) (i j : ) :
                  u.lc([i // u] {j ~> t2} t1) = {j ~> [i // u] t2} [i // u] t1
                  theorem Trm.subst_open_var (t u : Trm) :
                  u.lc∀ (i j : ), i j([i // u] t).open₀ ($j) = [i // u] t.open₀ ($j)
                  theorem Trm.subst_intro (t u : Trm) :
                  u.lcxt.fv, t.open₀ u = [x // u] t.open₀ ($x)
                  theorem Trm.subst_lc (t u : Trm) (x : ) :
                  t.lcu.lc([x // u] t).lc
                  theorem Trm.open_var_body (x : ) (t : Trm) :
                  t.body(t.open₀ ($x)).lc
                  theorem Trm.open_var_lc {T : Typ} (x : ) (t : Trm) :
                  (λ T,t).lc(t.open₀ ($x)).lc
                  theorem Trm.open_body (t u : Trm) :
                  t.bodyu.lc(t.open₀ u).lc
                  theorem Trm.open_lc {T : Typ} (t u : Trm) :
                  (λ T,t).lcu.lc(t.open₀ u).lc
                  theorem Trm.open_close_subst (t : Trm) (x y : ) :
                  t.lc∀ (k : ), ( {k ~> $y} { k <~ x } t) = [x // $y] t