Documentation

Stlc.reductions

inductive beta_red :
TrmTrmProp
Instances For
    theorem beta_red_regular (t1 t2 : Trm) :
    beta_red t1 t2t1.lc t2.lc
    theorem beta_rename (t1 t2 : Trm) (x y : ) :
    beta_red t1 t2beta_red ([x // $y] t1) ([x // $y] t2)
    theorem beta_abs_intro (t1 t2 : Trm) (T : Typ) (x : ) :
    beta_red (t1.open₀ ($x)) (t2.open₀ ($x))xt1.fvxt2.fvbeta_red (λ T,t1) (λ T,t2)
    theorem beta_red_subst_out (t1 t2 : Trm) (x : ) (u : Trm) :
    beta_red t1 t2 u.lcbeta_red ([x // u] t1) ([x // u] t2)
    inductive para :
    TrmTrmProp
    Instances For
      theorem para_regular (t1 t2 : Trm) :
      para t1 t2t1.lc t2.lc
      theorem lc_para_refl (t : Trm) :
      t.lcpara t t
      theorem para_subst_all (t1 t2 s1 s2 : Trm) :
      para t1 t2para s1 s2∀ (x : ), para ([x // s1] t1) ([x // s2] t2)
      theorem para_open_out (t t' u u' : Trm) (L : Finset ) :
      (∀ xL, para (t.open₀ ($x)) (u.open₀ ($x)))para t' u'para (t.open₀ t') (u.open₀ u')
      theorem opening_closing_para (t u : Trm) (x y z : ) :
      para t uyt.fv u.fv {x}para ( {z ~> $y} { z <~ x } t) ( {z ~> $y} { z <~ x } u)
      theorem open_close_para (t u : Trm) (x y : ) :
      para t uyt.fv u.fv {x}para ((t.close₀ x).open₀ ($y)) ((u.close₀ x).open₀ ($y))
      theorem para_through (t1 t2 u1 u2 : Trm) (x : ) :
      xt1.fv xt2.fvpara (t1.open₀ ($x)) (t2.open₀ ($x))para u1 u2para (t1.open₀ u1) (t2.open₀ u2)
      inductive multi_red :
      TrmTrmProp
      Instances For
        theorem multi_red_trans (t1 t2 t3 : Trm) :
        multi_red t1 t2multi_red t2 t3multi_red t1 t3
        theorem multi_red_regular (t1 t2 : Trm) :
        multi_red t1 t2t1.lc t2.lc
        theorem beta_to_multi_red (t1 t2 : Trm) :
        beta_red t1 t2multi_red t1 t2
        theorem multi_red_abs_intro' (u1 u2 : Trm) (T : Typ) (x : ) :
        multi_red u1 u2∀ (t1 t2 : Trm), u1 = t1.open₀ ($x)u2 = t2.open₀ ($x)xt1.fvxt2.fvmulti_red (λ T,t1) (λ T,t2)
        theorem multi_red_abs_intro (t1 t2 : Trm) (T : Typ) (x : ) :
        multi_red (t1.open₀ ($x)) (t2.open₀ ($x))xt1.fvxt2.fvmulti_red (λ T,t1) (λ T,t2)
        theorem multi_red_abs (t1 t2 : Trm) (T : Typ) (L : Finset ) :
        (∀ xL, multi_red (t1.open₀ ($x)) (t2.open₀ ($x)))multi_red (λ T,t1) (λ T,t2)
        theorem multi_red_app1 (t1 t1' t2 : Trm) :
        multi_red t1 t1' t2.lcmulti_red (t1 @ t2) (t1' @ t2)
        theorem multi_red_app2 (t1 t2 t2' : Trm) :
        multi_red t2 t2' t1.lcmulti_red (t1 @ t2) (t1 @ t2')
        theorem multi_red_subst_in (t : Trm) (x : ) (u1 u2 : Trm) :
        multi_red u1 u2 t.lcmulti_red ([x // u1] t) ([x // u2] t)
        theorem multi_red_subst_all (t1 t2 : Trm) (x : ) (u1 u2 : Trm) :
        multi_red t1 t2 multi_red u1 u2multi_red ([x // u1] t1) ([x // u2] t2)
        theorem multi_red_through (t1 t2 u1 u2 : Trm) (x : ) :
        xt1.fv xt2.fvmulti_red (t1.open₀ ($x)) (t2.open₀ ($x))multi_red u1 u2multi_red (t1.open₀ u1) (t2.open₀ u2)
        inductive multi_para :
        TrmTrmProp
        Instances For
          theorem multi_para_trans (t1 t2 t3 : Trm) :
          multi_para t1 t2multi_para t2 t3multi_para t1 t3
          theorem multi_para_regular (t1 t2 : Trm) :
          multi_para t1 t2t1.lc t2.lc
          theorem para_to_multi_para (t1 t2 : Trm) :
          para t1 t2multi_para t1 t2
          theorem beta_red_to_para (t t' : Trm) :
          beta_red t t'para t t'
          theorem multi_red_to_multi_para (t t' : Trm) :
          multi_red t t'multi_para t t'
          theorem para_to_multi_red (t t' : Trm) :
          para t t'multi_red t t'
          theorem multi_para_to_multi_red (t t' : Trm) :
          multi_para t t'multi_red t t'