Documentation

Stlc.multi_subst

def Trm.multi_subst (L : Finset ) (f : { x : // x L }Trm) :
TrmTrm
Equations
Instances For
    def Trm.context_type (Γ : context) (x : { x : // x context_terms Γ }) :
    Equations
    Instances For
      theorem Trm.multi_subst_at_singleton (t : Trm) (x : ) (T : Typ) (f : { x_1 : // x_1 context_terms [(x, T)] }Trm) :
      Trm.multi_subst (context_terms [(x, T)]) f t = [x // f x, ] t
      def Trm.add_term (Γ : context) (f : { x : // x context_terms Γ }Trm) (u : Trm) (y : ) (T : Typ) (x : { x : // x context_terms ((y, T) :: Γ) }) :
      Equations
      Instances For
        theorem Trm.multi_subst_fresh (Γ : context) (t : Trm) (u : Trm) (y : ) (T : Typ) (h : yt.fv) (f : { x : // x context_terms Γ }Trm) :
        theorem Trm.multi_subst_open_lemma_1 (e1 : Trm) (e2 : Trm) (Γ : context) (f : { x : // x context_terms Γ }Trm) :
        (∀ (x : ) (h : x context_terms Γ), (f x, h).lc)∀ (j : ), Trm.multi_subst (context_terms Γ) f ( {j ~> e2} e1) = {j ~> Trm.multi_subst (context_terms Γ) f e2} Trm.multi_subst (context_terms Γ) f e1
        theorem Trm.multi_subst_open_lemma_2 (Γ : context) (t : Trm) (u : Trm) (y : ) (T : Typ) :
        u.lcyt.fv∀ (f : { x : // x context_terms Γ }Trm), (∀ (x : ) (h : x context_terms Γ), (f x, h).lc)Trm.multi_subst (context_terms ((y, T) :: Γ)) (Trm.add_term Γ f u y T) (t.open₀ ($y)) = (Trm.multi_subst (context_terms Γ) f t).open₀ u
        theorem Trm.multi_subst_open (Γ : context) (t : Trm) (y : ) :
        ycontext_terms Γ∀ (f : { x : // x context_terms Γ }Trm), (∀ (x : ) (h : x context_terms Γ), (f x, h).lc)Trm.multi_subst (context_terms Γ) f (t.open₀ ($y)) = (Trm.multi_subst (context_terms Γ) f t).open₀ ($y)
        theorem Trm.context_type_eq_bind (Γ : context) (x : { x : // x context_terms Γ }) (T : Typ) :
        valid_ctx Γbinds (↑x) T ΓTrm.context_type Γ x = T
        theorem Trm.multi_subst_lc (t : Trm) (Γ : context) :
        t.lc∀ (f : { x : // x context_terms Γ }Trm), (∀ (x : ) (h : x context_terms Γ), (f x, h).lc)(Trm.multi_subst (context_terms Γ) f t).lc